Rapport d'essais

Contrôle réglementaire

N°D90718912201R001

Référence client

PO32464 du 23/05/2022

Mesures de rejets de substances à l'émission dans l'atmosphère

Entreprise

FIELDTURF TARKETT 91 Rue Chateaubriand 62260 AUCHEL

Installations du site

Adresse de facturation

Pièces jointes

FIELDTURF TARKETT Tour Initiale, 1 Terrasse Bellini 92800 PUTEAUX

Lieu de vérification

FIELDTURF TARKETT 91 Rue Chateaubriand 62260 AUCHEL

Périodicité

Dates de vérification

23/05/2022

Intervenant(s) DEKRA

DUQUESNOY MAXIME

Nom, qualité et visa du signataire DUQUESNOY MAXIME Responsable technique agence STAROSTA Mickael

age | age

Reproduction partielle interdite sans accord écrit de DEKRA

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *

Date du rapport 28/06/2022

ACT MESURES NORD Parc Telmat - Bâtiment B 78 rue Gustave Delory 59810 LESQUIN

Tél.: 03.20.16.33.72 - Fax: 03.20.87.68.67

SIRET: 43325083400846

Sommaire

1.	OBJET DES MESURES	3
_	ODCEDVATIONS CONCLUCIONS ET COMMENTAIDES	4
2.	OBSERVATIONS, CONCLUSIONS ET COMMENTAIRES	4
3.	SYNTHESE DES RESULTATS	4
	3.1. FOUR	5
	3.2. PERFORATEUR	8
4.	REMARQUES SUR LES CONDITIONS D'ECHANTILLONNAGES	11
	4.2. FOUR	
	4.3. PERFORATEUR	12
5.	DESCRIPTION DES METHODES DE MESURAGE (ET ANALYSES)	13
6.	DETAILS DES RESULTATS	16
	6.1. FOUR	16
	6.1.1. Caractéristiques de l'installation	16
	6.1.2. Détails des calculs et mesures	18
	6.2. PERFORATEUR	33
	6.2.1. Caractéristiques de l'installation	33
	6.2.2. Détails des calculs et mesures	35
7.	ANNEXES	49

En annexe se trouve un glossaire des termes utilisés dans ce rapport d'essais.

1. OBJET DES MESURES

Les mesures des effluents gazeux ont été réalisées dans le cadre d'une vérification réglementaire

A ce titre, les valeurs limites applicables aux installations contrôlées sont définies ainsi :

Installations contrôlées	Références réglementaires
Four Perforateur	AM du 27/12/13 rubrique 2661

De plus, les mesures ont été réalisées conformément aux exigences de l'Arrêté du 11 mars 2010, portant modalités d'agrément des laboratoires ou des organismes pour certains types de prélèvements et d'analyses à l'émission des substances dans l'atmosphère.

Le nombre d'essais réalisés par paramètre et les dérogations éventuelles sont indiqués au paragraphe 3.

Le pôle Mesure de DEKRA Industrial, en charge de ces contrôles est un organisme agréé par le ministère chargé des installations classées par arrêté du 17 décembre 2021 paru au JO du 31 décembre 2021.

Agréments n° 1a, 1b, 2, 3a, 4a, 5a, 6a, 7, 9a, 10a, 11, 12, 13, 14, 15, 16a pour les unités techniques de Trappes, Metz, Lyon, Marseille, Toulouse, Saint Herblain et Lesquin.

Agréments 1a et 1 b : prélèvement (1 a) et quantification (1 b) des poussières dans une veine gazeuse.

Agrément 2 : prélèvement et analyse des composés organiques volatils totaux. Agrément 3a : prélèvement de mercure (Hg).

Agrément 4a : prélèvement d'acide chlorhydrique (HCI).

Agrément 5a : prélèvement d'acide fluorhydrique (HF).
Agrément 6a : prélèvement de métaux lourds autres que le mercure (arsenic, cadmium, chrome, cobalt, cuivre, manganèse, nickel, plomb, antimoine, thallium, vanadium).

Agrément 7 : prélèvement de dioxines et furannes dans une veine gazeuse (PCDD et PCDF).

Agrément 9a : prélèvement d'hydrocarbures aromatiques polycycliques (HAP). Agrément 10 a : prélèvement du dioxyde de soufre (SO2).

Agrément 11 : prélèvement des oxydes d'azote (NOx). Agrément 12 : prélèvement du monoxyde de carbone (CO).

Agrément 13 : prélèvement de l'oxygène (O2).

Agrément 14 : détermination de la vitesse et du débit-volume.

Agrément 15 : prélèvement et détermination de la teneur en vapeur d'eau.

Agrément 16a : prélèvement de l'ammoniac (NH3).

2. OBSERVATIONS, CONCLUSIONS ET COMMENTAIRES

Installation	Conformité / VLE	Commentaire / Conclusion				
Four	OUI	Concentrations inférieures aux VLE				
Perforateur	OUI	Concentrations inférieures aux VLE				

Nota: Tout commentaire et/ou toute conclusion est délivré sans prendre en compte les incertitudes

3. SYNTHESE DES RESULTATS

Les détails des mesures (résultats par congénères le cas échéant, incertitude de mesure) sont donnés au paragraphe « Détails des résultats ».

- Les concentrations sont données conformément aux prescriptions des arrêtés de référence sur gaz sec ou sur gaz humides, à la teneur en oxygène de référence le cas échéant et aux conditions normales de température et de pression (1,013.10⁵ Pa et 273 K) (m₀³).
- Pour les paramètres ou congénères non détectés lors de l'analyse, le résultat de l'essai est pris égal à 0. Pour les paramètres ou congénères détectés mais non quantifiés, ces derniers sont pris comme égaux à la moitié de limite de quantification.
- La valeur du blanc de prélèvement apparaissant dans le tableau de synthèse, est calculée à partir du volume prélevé sur le 1^{er} essai. Les valeurs calculées à partir des essais n° 2 et 3 le cas échéant, sont présentées dans les détails des mesures.
- Dans le cas où la concentration calculée d'un paramètre est inférieure à la valeur du blanc de l'essai, la concentration retenue est notée comme égale à la valeur du blanc.
- Le plan de mesurage et les durées d'échantillonnage ont été définis de façon à respecter les critères suivants : Blanc<0.2xVLE et LQ<0.2xVLE. Dans le cas où un de ces critères ne serait pas respecté, un écart aux normes sera signalé dans le § « Remarques sur les conditions d'échantillonnage».

Les éventuelles prestations d'analyses sous agrément et/ou sous accréditation sont réalisées par des laboratoires ayant les reconnaissances requises. Les résultats d'analyses sont joints en fin de rapport.

3.1. Four

• SERIE 1 - Poussières

Substances déterminées

Poussières*, Screening COV

Conditions de fonctionnement de l'installation et mesurages périphériques

Température moyenne des gaz (°C)	87,0
Débit des gaz secs, aux CNTP (m³₀/h)*	8647
Conditions de fonctionnement de	Production nominale : Non communiquée
l'installation durant les mesures	Production durant les mesures : Cf. Annexe

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Teneur en vapeur d'eau (% volume)	2,2	2,3	3,0	2,5	1
Vitesse des gaz (m/s)* (dans la section de mesure)	6,5	6,6	6,6	6,6	1
Date essai	23/05/2022	23/05/2022	23/05/2022	1	1
Durée essai (mn)	60	60	62	1	1

Résultats des mesurages - Méthodes manuelles

Poussières

Poussières*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	0,36	0,30	0,19	0,28	40
Unité concentration normalisée	mg/m³0	mg/m³0	mg/m³0	mg/m³0	40
Flux horaire	3,1	2,6	1,7	2,5	,
Unité flux horaire	g/h	g/h	g/h	g/h	,

	AUTRES SUBSTANCES																			
	Composé	CAS -	N° ▼	Débit ▼	Volum 🕶	H2O →	٧	nt 🔻	e1 🔻		(v	e 1 🔻	Tot ▼	Tot 🕶	Rer ▼	Concentratio 🕶	Flux 🔻	VLE ~	¥	Conforr ▼
			plvt	(m³₀/h sec)	(m³ ₀)	%	Brut (µg)	LD	retenu	Brut (µg)	וט	retenu		=f(Blc)		μg/Nm³ sec	g/h	μg/m ₀ O ref	flux	NC / C
Somme des COV		1														2484,0	21,3	20000		С

• SERIE 2 - Gaz

Substances déterminées

O2*, CO2, CO*, NOx*, COVT*, CH4*, COV NM*

Conditions de fonctionnement de l'installation et mesurages périphériques

Température moyenne des gaz (°C)	87,0
Débit des gaz secs, aux CNTP (m³₀/h)*	8700
Conditions de fonctionnement de l'installation durant les mesures	Production nominale : Non communiquée Production durant les mesures : Cf. Annexe

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Teneur en vapeur d'eau (% volume)	2,1	2,3	2,9	2,4	1
Vitesse des gaz (m/s)* (dans la section de mesure)	6,4	6,5	6,6	6,5	1
Date essai	23/05/2022	23/05/2022	23/05/2022	1	1
Durée essai (mn)	30	30	30	1	1

Résultats des mesurages - Méthodes automatiques

O2*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	19,9	21,0	21,1	20,7	,
Unité concentration normalisée	%	%	%	%	,

CO2

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	0,74	0,14	0,048	0,31	,
Unité concentration normalisée	%	%	%	%	,
Flux horaire	125	23,4	8,3	52,2	,
Unité flux horaire	kg/h	kg/h	kg/h	kg/h	,

CO*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE	
Concentration sur gaz sec	9,4	11,3	11,7	10,8	100	
Unité concentration normalisée	mg/m³0	mg/m³0	mg/m³0	mg/m³0	100	
Flux horaire	80,7	98,4	102	93,6	,	
Unité flux horaire	g/h	g/h	g/h	g/h		

NOx*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	4,1	0,49	0	1,5	
Unité concentration normalisée	mg/m³0 eq. NO2	mg/m³0 eq. NO2	mg/m³0 eq. NO2	mg/m³0 eq. NO2	100
Flux horaire	35,2	4,3	0	13,2	,
Unité flux horaire	g/h	g/h	g/h	g/h	,

SYNTHESE DES RESULTATS

COVT*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	23,1	10,4	14,2	15,9	,
Unité concentration normalisée	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	1
Flux horaire	200	91,0	124	138	,
Unité flux horaire	g/h	g/h	g/h	g/h	,

CH4*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	10,2	2,5	1,4	4,7	
Unité concentration normalisée	mg/m³0 eq CH4	mg/m³0 eq CH4	mg/m³0 eq CH4	mg/m³0 eq CH4	50
Flux horaire	87,9	21,9	12,5	40,7	,
Unité flux horaire	g/h	g/h	g/h	g/h	,

COV NM*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	14,1	8,2	13,0	11,7	20
Unité concentration normalisée	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	20
Flux horaire	122	71,6	113	102	,
Unité flux horaire	g/h	g/h	g/h	g/h	,

3.2. Perforateur

• SERIE 1 - Poussières

Substances déterminées

Poussières*, Screening COV

Conditions de fonctionnement de l'installation et mesurages périphériques

Température moyenne des gaz (°C)	23,9
Débit des gaz secs, aux CNTP (m³₀/h)*	190
Conditions de fonctionnement de l'installation durant les mesures	Production nominale : Non communiquée Production durant les mesures : Cf. Annexe

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Teneur en vapeur d'eau (% volume)	0,70	0,80	0,80	0,77	1
Vitesse des gaz (m/s)* (dans la section de mesure)	2,3	2,3	2,6	2,4	1
Date essai	23/05/2022	23/05/2022	23/05/2022	1	1
Durée essai (mn)	60	60	68	1	1

Résultats des mesurages - Méthodes manuelles

Poussières

Poussières*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	12,7	4,9	13,7	10,4	40
Unité concentration normalisée	mg/m³0	mg/m³0	mg/m³0	mg/m³0	40
Flux horaire	2,3	0,88	2,9	2,0	,
Unité flux horaire	g/h	g/h	g/h	g/h	/

AUTRES SUBSTANCES																
Compose V CAS V N° V Débit V Volum V H2O V V int vie 1 V V;K V e1 V Tot V Tot V Rer V Concentratio V Flux V VLE V V Confort V																
	pNvt (m² vh sec) (
Somme des COV	1											1674,5	0,3	20000		С

• SERIE 2 - Gaz

Substances déterminées

O2*, CO2, CO*, NOx*, COVT*, CH4*, COV NM*

Conditions de fonctionnement de l'installation et mesurages périphériques

Température moyenne des gaz (°C)	23,9
Débit des gaz secs, aux CNTP (m³₀/h)*	193
Conditions de fonctionnement de l'installation durant les mesures	Production nominale : Non communiquée Production durant les mesures : Cf. Annexe

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Teneur en vapeur d'eau (% volume)	0,70	0,70	0,70	0,70	1
Vitesse des gaz (m/s)* (dans la section de mesure)	2,3	2,3	2,6	2,4	1
Date essai	23/05/2022	23/05/2022	23/05/2022	1	1
Durée essai (mn)	30	30	30	1	1

Résultats des mesurages - Méthodes automatiques

O2*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	21,1	21,2	21,2	21,2	,
Unité concentration normalisée	%	%	%	%	,

CO2

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	0,050	0,046	0,043	0,047	,
Unité concentration normalisée	%	%	%	%	,
Flux horaire	0,18	0,17	0,18	0,18	,
Unité flux horaire	kg/h	kg/h	kg/h	kg/h	,

CO*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE	
Concentration sur gaz sec	11,6	11,5	10,8	11,3	100	
Unité concentration normalisée	mg/m³0	mg/m³0	mg/m³0	mg/m³0	100	
Flux horaire	2,1	2,2	2,3	2,2	,	
Unité flux horaire	g/h	g/h	g/h	g/h	7	

NOx*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	0	0	0	0	
Unité concentration normalisée	mg/m³0 eq. NO2	mg/m³0 eq. NO2	mg/m³0 eq. NO2	mg/m³0 eq. NO2	100
Flux horaire	0	0	0	0	,
Unité flux horaire	g/h	g/h	g/h	g/h	1

SYNTHESE DES RESULTATS

COVT*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	10,3	13,0	14,0	12,4	,
Unité concentration normalisée	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	,
Flux horaire	1,9	2,5	2,9	2,4	,
Unité flux horaire	g/h	g/h	g/h	g/h	I

CH4*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE
Concentration sur gaz sec	1,0	1,2	1,5	1,2	
Unité concentration normalisée	mg/m³0 eq CH4	mg/m³0 eq CH4	mg/m³0 eq CH4	mg/m³0 eq CH4	50
Flux horaire	0,19	0,23	0,31	0,24	,
Unité flux horaire	g/h	g/h	g/h	g/h	,

COV NM*

	Essai 1	Essai 2	Essai 3	Moyenne	VLE	
Concentration sur gaz sec	9,4	11,9	12,7	11,3	20	
Unité concentration normalisée	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	mg/m³0 Ind C	20	
Flux horaire	1,7	2,3	2,7	2,2	,	
Unité flux horaire	g/h	g/h	g/h	g/h	,	

REMARQUES SUR LES CONDITIONS D'ECHANTILLONNAGES

4. REMARQUES SUR LES CONDITIONS D'ECHANTILLONNAGES

En cas d'écarts aux normes, l'estimation des incertitudes des résultats peut être sous-évaluée.

Dérogations admises réglementairement par l'A. 11/03/2010 :

- Un seul essai a pu être réalisé pour les polluants mesurés par méthodes manuelles, pour lesquels les teneurs attendues étaient inférieures à 20% de la VLE dans le rapport réglementaire précédent.
- Un seul essai peut être réalisé pour les mesures de dioxines / furannes
- Si les teneurs en vapeur d'eau ou en particules sont telles qu'elles conduisent à une impossibilité de réaliser un prélèvement d'une heure (condensation, colmatage rapide), la durée a pu être réduite.
- Pour les installations fonctionnant à différents régimes ou allures, ou fonctionnement sous forme de cycle (par batch), le nombre de phases, d'allures ou de cycles à caractériser, le nombre et la durée des prélèvements, sont définis par l'exploitant de l'installation en accord avec l'inspection des installations classées

4.2. Four

ECARTS PAR RAPPORT A L'A. 11/03/2010

Les essais ont été menés conformément à la réglementation. Le nombre et les durées d'essais ont été définis par comparaison des VLE aux derniers résultats périodiques du site

ECARTS PAR RAPPORT A LA NORME (SECTION DE MESURAGE – METHODOLOGIE DE MESURE)

Paramètres / Normes	Ecart	Impact possible sur le résultat
Débit / ISO 10-780	Les distances amont ou avale requises ne sont pas respectées ce qui peut induire un écoulement non laminaire. L'impact réel sur les résultats est vérifié lors des mesures de débit.	Impact négligeable compte tenu du profil des vitesses constant sur la section

ECARTS PAR RAPPORT AU CONTRAT

Aucun, le contrat a été réalisé dans son intégralité

REMARQUES SUR LES CONDITIONS D'ECHANTILLONNAGES

4.3. Perforateur

ECARTS PAR RAPPORT A L'A. 11/03/2010

Les essais ont été menés conformément à la réglementation. Le nombre et les durées d'essais ont été définis par comparaison des VLE aux derniers résultats périodiques du site

ECARTS PAR RAPPORT A LA NORME (SECTION DE MESURAGE – METHODOLOGIE DE MESURE)

Paramètres / Normes	Ecart	Impact possible sur le résultat
Composés particulaires : NF X 44- 052 ou NF EN 13284-1	Des pressions différentielles mesurées sont inférieures à 5 Pa, l'isocinétisme n'a pu être suivi en ces points.	Possibilité de mauvaise détermination de la concentration. Les incertitudes sont sous évaluées. Impact négligeable sur la conformité du résultat compte tenu de la concentration mesurée en comparaison à la VLE.
Débit / ISO 10-780 / NFENISO16911 / FDX43140	Des pressions différentielles mesurées sont inférieures à 10 Pa	Possibilité de mauvaise détermination du débit. Les incertitudes sont sous évaluées.

ECARTS PAR RAPPORT AU CONTRAT

Aucun, le contrat a été réalisé dans son intégralité

5. DESCRIPTION DES METHODES DE MESURAGE (ET ANALYSES)

NOTA: Lorsque les méthodes ci-dessous sont mises en œuvre simultanément, la norme NF X 43-551(2021-10) « Emissions de sources fixes – Exigences spécifiques de mesurage (ressources, processus de mise en œuvre, rapportage) », est également appliquée.

Pour la description détaillée des méthodologies, se reporter en annexe.

INCERTITUDES DE MESURAGE

Toute mesure est affectée par un certain nombre d'incertitudes. Nos résultats de mesures sont ainsi donnés avec une incertitude élargie associée à chaque mesure. (Facteur d'élargissement k=2, correspondant à un intervalle de confiance de 95%). Ces incertitudes sont présentées dans les détails des calculs et mesure de chaque installation.

Les incertitudes sont estimées dans le cas d'un respect total des conditions requises par les normes mises en œuvre. Dans le cas d'écart aux normes l'estimation des incertitudes peut être sous-évaluée.

DEBIT - VITESSE - TENEUR EN EAU

Mesure de	Norme de référence / Méthode
Débit - vitesse	ISO 10 780 (11-1994) — « Mesurage de la vitesse et du débit-volume des courants gazeux dans des conduites ».
Débit - vitesse	NF EN ISO 16911-1 (04-2013) et FDX 43140 (04-2017)
	« Détermination manuelle de la vitesse et du débit-volume d'écoulement dans les conduits». – Méthode du Pitot
Teneur en eau	Par mesure de la température sèche et humide ou par calcul à partir des combustibles utilisés

METHODES AUTOMATIQUES

Mesure de	Norme de référence / Méthode
Oxygène O ₂	NF EN 14789 (06/2017) — « Emission de sources fixes — Détermination de la concentration volumique en oxygène (0 ₂). Méthode de référence : paramagnétisme ».
Oxydes d'azote (NOx)	NF EN 14792 (02/2017) — « Emission de sources fixes – Détermination de la concentration massique en oxydes d'azote (NOx). Méthode de référence : chimiluminescence ».
Monoxyde de carbone (CO)	NF EN 15058 (02/2017) - « Emission de sources fixes – Détermination de la concentration massique en monoxyde de carbone (CO). Méthode de référence : spectrométrie infrarouge non dispersive ».
Composés Organiques Volatils Totaux (COVT)	NF EN 12619 (02/2013) — « Emission de sources fixes- Détermination de la concentration massique en carbone organique total à de faibles concentrations dans les effluents gazeux — Méthode du détecteur continu à ionisation de flamme »
Méthane (CH ₄) et Composés Organiques Volatils non méthaniques (COVnm)	XP X 43-554 (07-2009) — « Détermination de la concentration massique en composés organiques volatils non méthaniques dans les effluents gazeux, à partir des mesures des composés organiques volatils totaux et du méthane ».
CO ₂	Méthode interne : Par absorption infrarouge ou électrochimie.

Dans tous les cas, lorsque les concentrations mesurées sont rapportées à une concentration en oxygène de référence, la teneur en O_2 correspondante est mesurée sur toute la durée du prélèvement.

DESCRIPTION DES METHODES DE MESURAGE (ET ANALYSES)

METHODES MANUELLES PAR FILTRATION / ABSORPTION

Mesure de	Norme de référence
Poussières	NF EN 13284-1 (11/2017) — « Détermination de la faible concentration en masse de poussières – Méthode gravimétrique manuelle »
	et NF X 44-052 (05/2002) - « Détermination de fortes concentrations massiques de poussières – Méthode gravimétrique manuelle ».

METHODES MANUELLES SUR SUPPORTS SPECIFIQUES

Mesure de	Norme de référence
Screening COV	Méthodes internes

DESCRIPTION DES METHODES DE MESURAGE (ET ANALYSES)

MATERIELS DE PIEGEAGE

Matériau buse et canne de prélèvement :

Type de filtration : Extérieur conduit

Polluants prélevés	Support piégeage	Nombre de flacons laveurs	type de diffuseurs	Solution de rinçage
Poussières	Filtre quartz D90	-	-	Eau
Screening COV	Tube TCA	1	/	I

6. DETAILS DES RESULTATS

6.1. Four

6.1.1. CARACTERISTIQUES DE L'INSTALLATION

Type d'installation : Four

Type / Nature de combustible : Installation sans combustion

Description du process : /

Type de procédé : Continu

L'emplacement des sections de mesures, les orifices de prélèvement et les plates-formes d'accès doivent être conçus conformément aux prescriptions de la norme NF EN 15259. La qualité des résultats de mesures dépend de la bonne implantation et de l'équipement convenable de ces sections de mesure.

CARACTÉRISTIQUES GÉNÉRALES DU CONDUIT CONTRÔLE

Forme et orientation du conduit : Circulaire et Verticale Diamètre intérieur (m) : 0,8

Diamètre hydraulique $D_H = 4 \times \frac{\text{section}}{\text{périmètre}}$ (m): 0,80

Hauteur totale approximative de la cheminée (m) : 5,0

Conditions d'accès : PIRL

Sécurisation du site de mesurage : OUI

Plateforme adaptée pour la mesure

(dimensions et capacité portante): OUI

EMPLACEMENT DE LA SECTION DE MESURE

Distance en amont de la section sans accident* (m): 1,0

Distance amont suffisante (> 5 x D_H): NON

Distance en aval de la section sans accident* (m): 5,0

Element perturbateur en aval : Débouché à l'air libre

Distance aval suffisante?

(Cas d'un obstacle de faible influence => $d_{aval} \ge 2 D_H$): OUI

Moyens de levage : Aucun

Protection contre les intempéries : OUI

Commentaires : Les distances amont ou avale requises ne sont pas respectées ce qui peut induire un écoulement non laminaire. Les essais ont été menés sur la meilleure section disponible.

^{*} est considéré comme accident toute perturbation dans l'écoulement (coude, ventilateur, débouché à l'air libre...)

DETAILS DES RESULTATS

FOUR

• ORIFICES ET POINTS DE PRELEVEMENT DE LA SECTION DE MESURE

Type d'orifice : Trou scie-cloche

Orifices permettant une mesure correcte : Oui

	Conditions normalisées	Conditions réelles
Nombre de points de scrutation pour la mesure de débit selon ISO 10780	8	8
Nombre d'axes de scrutation Selon NF EN 13284-1 (composés particulaires)	2	2
Nombre de points de prélèvement Selon NF EN 13284-1 (composés particulaires)	4	4

Commentaires:

HOMOGÉNÉITE DE LA SECTION DE MESURE (POUR COMPOSES GAZEUX)

Détermination de l'homogénéité : Homogénéité supposée acquise

Effluents issus d'un seul émetteur sans entrée d'air

6.1.2. DETAILS DES CALCULS ET MESURES

• SERIE 1 - Poussières

DEBIT

Détail des prélèvements débit - Essai N°1

Date de mesure : 23/05/2022 Heure : 10:14

Intervenant(s): Duquesnoy

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1002 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 86,2 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 2,2 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m$^3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m$^3):} & 0,96 \\ \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -5
Axe 2 (Pa): -5
Moyenne (Pa): -5,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1002

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	16	86,2	5,8
2	20,0	20,0 18		6,1
3	60,0	21	86,3	6,6
4	74,6	25	86,6	7,2

Axe 2

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	23	86,3	6,9
2	20,0	20	86,2	6,5
3	60,0	21	86,4	6,6
4	74,6	17	86,3	6,0

Résultats débit - Essai N°1:

Vitesse des gaz dans le conduit (m/s) : $6,50 \pm 0,51$ Débit des gaz au moment de la mesure (m³/h) : 11700 ± 841 Débit des gaz humides (m³₀/h) : 8770 ± 641 **Débit des gaz secs (m³₀/h) :** 8580 ± 631

Ecarts sur résultats débit - Essai N°1:

Pression différentielle pour chaque point des axes > 10Pa : CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°2

Date de mesure : 23/05/2022 Heure : 11:54

Intervenant(s): Duquesnoy

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1002 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 87,5 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 2,3 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m$^3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m$^3):} & 0,96 \\ \mbox{} \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -8
Axe 2 (Pa): -10
Moyenne (Pa): -9,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1002

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4 21		87,5	6,6
2	20,0	20	87,6	6,5
3	60,0	23	87,5	6,9
4	74,6	18	87,5	6,1

Axe 2

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	23	87,6	6,9
2	20,0	20	87,4	6,5
3	60,0	19	87,5	6,3
4	74,6	21	87,4	6,6

Résultats débit - Essai N°2:

Vitesse des gaz dans le conduit (m/s) : $6,60 \pm 0,41$ Débit des gaz au moment de la mesure (m³/h) : 11900 ± 831 Débit des gaz humides (m³₀/h) : 8880 ± 641 **Débit des gaz secs (m³₀/h) :** 8680 ± 621

Ecarts sur résultats débit - Essai N°2:

Pression différentielle pour chaque point des axes > 10Pa : CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°3

Date de mesure : 23/05/2022 Heure : 13:03

Intervenant(s): Duquesnoy

Données gaz :

Pression barométrique sur le lieu de mesure P ₀ (hPa) :	1002
Température sèche moyenne des gaz dans le conduit T ₁ (°C) :	87,1
Teneur ponctuelle en O ₂ sur gaz secs (%):	20,9
Teneur ponctuelle en CO ₂ sur gaz secs (%):	0,10
Teneur moyenne en H ₂ O (%):	3,0
Masse volumique aux CNTP r ₀ (kg/m ³ ₀):	1,3
Masse volumique dans le conduit r ₁ (kg/m ³):	0,96

Pression statique dans le conduit dP₀ (Pa) :

 $Axe \ 1 \ (Pa) : \qquad -6$ $Axe \ 2 \ (Pa) : \qquad -7$ $Moyenne \ (Pa) : \qquad -6,5$ $Pression \ absolue \ dans \ le \ conduit \ P_1 = P_0 + dP_0 \ (hPa) : \qquad 1002$

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)	
1	5,4	24	87,1	7,1	
2	20,0	20	87,2	6,5	
3	60,0	19	87,1	6,3	
4	74,6	21	87,2	6,6	

Axe 2

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	18	87,1	6,1
2	20,0	20	87,2	6,5
3	60,0	22	87,1	6,8
4	74,6	23	87,0	6,9

Résultats débit - Essai N°3:

Vitesse des gaz dans le conduit (m/s) : $6,60 \pm 0,41$ Débit des gaz au moment de la mesure (m³/h) : 11900 ± 831 Débit des gaz humides (m³₀/h) : 8950 ± 641 **Débit des gaz secs (m³₀/h) :** 8680 ± 621

Ecarts sur résultats débit - Essai N°3:

Pression différentielle pour chaque point des axes > 10Pa : CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

MESURES PAR FILTRATION | ABSORPTION

Détail des prélèvements - Essai N°1

Date de mesure : 23/05/2022 Intervenants : Duquesnoy

Données de prélèvement :

Heure de début de prélèvement : 11:14
Heure de fin de prélèvement : 12:14
Durée de prélèvement (mn) : 60

Suivi isocinétisme : Cf. ANNEXE 4

Température de filtration cible (°C) : température des fumées

	Validation étanchéité	Volume prélevé (m³)	Polluants mesurés
Ligne principale	CONFORME	1,112	
	Valeur fuite : 0,3 l/min		
Fraction particulaire		1,112	Poussières*

Paramètres pris en compte pour le calcul des flux :

Débit des gaz secs (m^3_0/h): 8580 ± 631

Résultats des prélèvements - Essai N°1 :

• MASSES RETENUES:

	FRACTION PARTICULAIRE					FRACTION GAZEUSE					FRACTION TOTALE					
Ligne	Polluant	Unité Masse	Masse su	r Filtre	Masse Rir	ıçage	Masse To	otale	Masse barbo principau		Masse barbo secondair		Rende ment	Masse Tota	ale	
LP	Poussières*	mg	0,40	Q	0		0,40	Q								Q

Nota: Si masse quantifiée (Q): masse = masse réelle, Si masse détectée mais non quantifiable (<LQ): masse = LQ/2, Si masse non détectée (<LD): masse = 0.

• CONCENTRATIONS:

						FRACTION P	PARTICULAIRE	FRACTION	GAZEUSE	FRACTION TOTALE		
Liç	gne	Polluant	Unité concen -tration	sur ga	ntration z secs LQ	Concentration sur gaz secs						
LP		Poussières*	mg/m³ □	0	0,090	0,359 ± 0,045				0,359 ± 0,045		

• FLUX:

		FRACTION TOTALE							
Ligne	Polluant	Flux Horaire (g/h) Flux Journalier (kg/jour) Facteur d'émission (kg/tonne)							
LP	Poussières*	3,08 ± 0,45		1					

Nota: Dans le cas où la concentration mesurée est inférieure à la concentration du blanc de site, le flux est calculé à partir de la valeur de la concentration du blanc.

Détail des prélèvements - Essai N°2

Date de mesure : 23/05/2022 Intervenants : Duquesnoy

Données de prélèvement :

Heure de début de prélèvement : 11:54
Heure de fin de prélèvement : 12:54
Durée de prélèvement (mn) : 60

Suivi isocinétisme : Cf. ANNEXE 4

Température de filtration cible (°C) : température des fumées

	Validation étanchéité	Volume prélevé (m ³)	Polluants mesurés
Ligne principale	CONFORME	1,168	
	Valeur fuite : 0,3 l/min		
Fraction particulaire		1,168	Poussières*

Paramètres pris en compte pour le calcul des flux :

Débit des gaz secs (m_0^3/h): 8680 ± 621

Résultats des prélèvements - Essai N°2 :

• MASSES RETENUES:

			FRACTION PARTICULAIRE					FRACTION GAZEUSE							FRACTION TOTALE		
Lig	gne	Polluant	Unité Masse	Masse su	r Filtre	Masse Rin	ıçage	Masse To	otale	Masse barbo		Masse barbo secondai		Rende ment	Masse Tota	ale	
LP		Poussières*	mg	0,35	Q	0		0,35	Q								Q

Nota: Si masse quantifiée (Q): masse = masse réelle, Si masse détectée mais non quantifiable (<LQ): masse = LQ/2, Si masse non détectée (<LD): masse = 0.

• CONCENTRATIONS:

					FRACTION P	PARTICULAIRE	FRACTION	GAZEUSE	FRACTION TOTALE			
Ligne	Polluant	Unité concen -tration		ntration z secs LQ	Concentration sur gaz secs							
LP	Poussières*	mg/m³ □	0	0,086	0,299 ± 0,038	_	-	_	0,299 ± 0,038	-		

• FLUX:

			FRACTION TOTALE	
Ligne	Polluant	Flux Horaire (g/h)	Flux Journalier (kg/jour)	Facteur d'émission (kg/tonne)
LP	Poussières*	2,60 ± 0,38		1

Nota: Dans le cas où la concentration mesurée est inférieure à la concentration du blanc de site, le flux est calculé à partir de la valeur de la concentration du blanc.

Détail des prélèvements - Essai N°3

Date de mesure : 23/05/2022 Intervenants : Duquesnoy

Données de prélèvement :

Heure de début de prélèvement : 13:03 Heure de fin de prélèvement : 14:05 Durée de prélèvement (mn) : 62

Suivi isocinétisme : Cf. ANNEXE 4

Température de filtration cible (°C) : température des fumées

	Validation étanchéité	Volume prélevé (m³)	Polluants mesurés
Ligne principale	CONFORME	1,301	
	Valeur fuite : 0,3 l/min		
Fraction particulaire		1,301	Poussières*

Paramètres pris en compte pour le calcul des flux :

Débit des gaz secs (m_0^3/h): 8680 ± 621

Résultats des prélèvements - Essai N°3 :

• MASSES RETENUES :

				FRACTION PARTICULAIRE						FRACTION GAZEUSE						
Ligne	Polluant	Unité Masse	Masse su	r Filtre	Masse Rin	Masse Rinçage Masse Totale				Masse barboteurs principaux Masse barboteurs secondaires Rende ment Masse					ale	
LP	Poussières*	mg	0,25	Q	0		0,25	Q						•		Q

Nota: Si masse quantifiée (Q): masse = masse réelle, Si masse détectée mais non quantifiable (<LQ): masse = LQ/2, Si masse non détectée (<LD): masse = 0.

• CONCENTRATIONS:

					FRACTION P	ARTICULAIRE	FRACTION	GAZEUSE	FRACTION TOTALE			
Ligne	Polluant	Unité concen -tration		ntration z secs LQ	Concentration sur gaz secs							
LP	Poussières*	mg/m³ □	0	0,077	0,192 ± 0,024				0,192 ± 0,024			

• FLUX:

			FRACTION TOTALE	
Ligne	Polluant	Flux Horaire (g/h)	Flux Journalier (kg/jour)	Facteur d'émission (kg/tonne)
LP	Poussières*	1,66 ± 0,24		1

Nota: Dans le cas où la concentration mesurée est inférieure à la concentration du blanc de site, le flux est calculé à partir de la valeur de la concentration du blanc.

MESURES SUR SUPPORTS SPECIFIQUES

Nom installation :	Four	
Intervenant :	Duquesnoy	
Date de prélèvement :	23/05/2022	

N° de prélèvement	Unité	N°1
N° pompe	1	104838
Débit Installation	Nm³/h sec	8580
Pression barométrique	hPa	1012
O ₂ Référence	%	
O ₂ mesuré (si VLE O ₂ ref)	%	20,7
Humidité	%	2,2
Heure début de prélèvement	hh:mm	11:54
Heure fin de prélèvement	hh:mm	12:54
Durée prélèvement	min	60
Type de pompe	1	Avec compteur
Température au compteur	°C	18,4
Compteur initial	m ³	26,668
Compteur final	m ³	26,742
Volume réel prélevé	m ³	0,074
Volume normalisé prélevé	Nm³ sec	0,06924
Débit pompe avant mesure	L/min	1
Débit pompe après mesure	L/min	1
Débit pompe moyen	L/min	1
Température sortie pompe	°C	1
Volume réel prélevé	m ³	1
Volume normalisé prélevé	Nm³ sec	1
Volume normalisé retenu	Nm³ sec	0,06924
Volume normalisé retenu	Nm³ sec O₂ref	

Composé	▼ CAS ▼	N° ▼	Débit ▼	Volum ▼	H2O ₩	-	nt 🕶	ie 1 🔻		ck · 🔻	e 1 🔻	Tot ▼	Tot ▼	Ren 🕶	Concentratio ▼	Flux 🔻	VLE ~	~	Conforr ▼
		plvt	(m³ _o /h sec)	(m³ ₀)	%	Brut (µg)	LD	retenu	Brut (µg)	LD	retenu		=f(Blc)		μg/Nm³ sec	g/h	µg/m ₀ O ref	flux	NC / C
1-Propene 2-methyl-	000115-11-7	N°1	8580	0,069242	2,2	6	2	6	3	0	0	6	6	100%	86,7	0,7			
Butane	000106-97-8	N°1	8580	0,069242	2,2	11	2	11	0	0	0	11	11	100%	158,9	1,4			
Pentane	000109-66-0	N°1	8580	0,069242	2,2	4	2	4	0	0	0	4	4	100%	57,8	0,5			
Acetone	000067-64-1	N°1	8580	0,069242	2,2	20	2	20	0	0	0	20	20	100%	288,8	2,5			
1-Pentene 2-methyl-	000763-29-1	N°1	8580	0,069242	2,2	26	2	26	0	0	0	26	26	100%	375,5	3,2			
Benzene	000071-43-2	N°1	8580	0,069242	2,2	3	2	3	0	0	0	3	3	100%	43,3	0,4			
Cyclohexene	000110-83-8	N°1	8580	0,069242	2,2	8	2	8	0	0	0	8	8	100%	115,5	1,0			
2-Pentanone	000107-87-9	N°1	8580	0,069242	2,2	9	2	9	0	0	0	9	9	100%	130,0	1,1			
Methyl Isobutyl Ketone	000108-10-1	N°1	8580	0,069242	2,2	6	2	6	0	0	0	6	6	100%	86,7	0,7			
Toluène	000108-88-3	N°1	8580	0,069242	2,2	5	2	5	0	0	0	5	5	100%	72,2	0,6			
Octane	000111-65-9	N°1	8580	0,069242	2,2	5	2	5	0	0	0	5	5	100%	72,2	0,6			
2,4-Diméthyl-1-heptene	019549-87-2	N°1	8580	0,069242	2,2	36	2	36	0	0	0	36	36	100%	519,9	4,5			
Styrene	000100-42-5	N°1	8580	0,069242	2,2	20	2	20	0	0	0	20	20	100%	288,8	2,5			
2-Heptanone, 4-méthyl-	006137-06-0	N°1	8580	0,069242	2,2	13	2	13	0	0	0	13	13	100%	187,7	1,6			

• SERIE 2 - Gaz

DEBIT

Détail des prélèvements débit - Essai N°1

Date de mesure : 23/05/2022 Heure : 10:14

Intervenant(s): Duquesnoy

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1012 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 86,2 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 2,2 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m$^3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m$^3):} & 0,97 \\ \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -5
Axe 2 (Pa): -5
Moyenne (Pa): -5,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1012

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	16	86,2	5,7
2	20,0	18	86,2	6,1
3	60,0	21	86,3	6,6
4	74,6	25	86,6	7,2

Axe 2

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	23	86,3	6,9
2	20,0	20	86,2	6,4
3	60,0	21	86,4	6,6
4	74,6	17	86,3	5,9

Résultats débit - Essai N°1:

Vitesse des gaz dans le conduit (m/s) : $6,40 \pm 0,51$ Débit des gaz au moment de la mesure (m³/h) : 11600 ± 831 Débit des gaz humides (m³₀/h) : 8810 ± 651 **Débit des gaz secs (m³₀/h) :** 8630 ± 631

Ecarts sur résultats débit - Essai N°1:

Pression différentielle pour chaque point des axes > 10Pa : CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°2

Date de mesure : 23/05/2022 Heure : 12:07

Intervenant(s): Duquesnoy

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1012 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 87,5 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 2,3 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m3):} & 0,97 \\ \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -8
Axe 2 (Pa): -10
Moyenne (Pa): -9,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1012

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	21	87,5	6,6
2	20,0	20	87,6	6,4
3	60,0	23	87,5	6,9
4	74,6	18	87,5	6,1

Axe 2

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	23	87,6	6,9
2	20,0	20	87,4	6,4
3	60,0	19	87,5	6,3
4	74,6	21	87,4	6,6

Résultats débit - Essai N°2:

Vitesse des gaz dans le conduit (m/s) : $6,50 \pm 0,41$ Débit des gaz au moment de la mesure (m³/h) : 11800 ± 831 Débit des gaz humides (m³₀/h) : 8950 ± 641 **Débit des gaz secs (m³₀/h) :** 8740 ± 631

Ecarts sur résultats débit - Essai N°2:

Pression différentielle pour chaque point des axes > 10Pa : CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°3

Date de mesure : 23/05/2022 Heure : 12:37

Intervenant(s): Duquesnoy

Données gaz :

Pression barométrique sur le lieu de mesure P ₀ (hPa) :	1012
Température sèche moyenne des gaz dans le conduit T ₁ (°C) :	87,1
Teneur ponctuelle en O ₂ sur gaz secs (%):	20,9
Teneur ponctuelle en CO ₂ sur gaz secs (%):	0,10
Teneur moyenne en H ₂ O (%):	3,0
Masse volumique aux CNTP r_0 (kg/m 3_0):	1,3
Masse volumique dans le conduit r ₁ (kg/m ³):	0,97

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -6
Axe 2 (Pa): -7
Moyenne (Pa): -6,5

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1012

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	24	87,1	7,1
2	20,0	20	87,2	6,4
3	60,0	19	87,1	6,3
4	74,6	21	87,2	6,6

DETAILS DES RESULTATS

FOUR

Axe 2

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	5,4	18	87,1	6,1
2	20,0	20	87,2	6,4
3	60,0	22	87,1	6,8
4	74,6	23	87,0	6,9

Résultats débit - Essai N°3:

Vitesse des gaz dans le conduit (m/s) : $6,60 \pm 0,41$ Débit des gaz au moment de la mesure (m³/h) : 11900 ± 821 Débit des gaz humides (m³₀/h) : 8990 ± 641 **Débit des gaz secs (m³₀/h) :** 8730 ± 621

Ecarts sur résultats débit - Essai N°3:

Pression différentielle pour chaque point des axes > 10Pa : CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

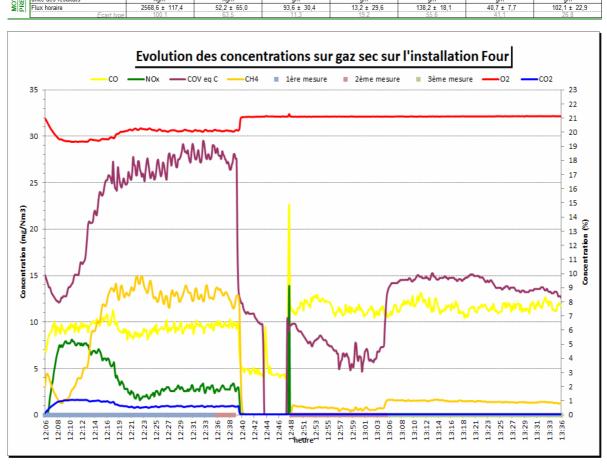
POLLUANTS GAZEUX - MESURES AUTOMATIQUES

Périodes supprimées : de 12:39 à 12:48 -

Résultats des mesures :

Ajustage et vérification des analyseurs - <u>Correction des dérives</u>

Nom installation :
Four
Date de mesure :
23/05/2022
Intervenants
Duquesnoy


Substances	02	CO ₂	CO	NOx	COV totaux	CH₄
unité des gaz mesurés	%	%	ppm	ppm	ppm	ppm
Valeur pleine échelle	25	20	200	100	100	100
Nature du gaz étalon	O2,CO2,CO ds	O2,CO2,CO ds	O2,CO2,CO ds	NO dans azote	Propane dans air	CH4 dans air
T = Teneur de ce gaz étalon	11,05	12,04	89,90	91,00	71,20	80,60
Gaz de zéro utilisé	Azote Alphagaz1 (pureté>99,999%)	Azote Alphagaz1 (pureté>99,999%)	Azote Alphagaz1 (pureté>99,999%)	Azote Alphagaz1 (pureté>99,999%)	Air Alphagaz1 (pureté>99,999%)	Air Alphagaz1 (pureté>99,999%)
0 = Teneur de ce gaz zéro	0	0	0	0	0	0
AJUSTAGE EN TETE DE LIGNE						
h _{cals} = Début ajustage étalon	23/5/2022 10:15	23/5/2022 10:15	23/5/2022 10:15	23/5/2022 10:18	23/5/2022 10:00	23/5/2022 10:06
C = valeur ajustage sensibilités	11,05	12,04	89,80	91,00	71,30	80,70
h _{cal0} = Verif ajustage zéro	23/5/2022 10:20	23/5/2022 10:20	23/5/2022 10:20	23/5/2022 10:20	23/5/2022 10:08	23/5/2022 10:08
Z = valeur ajustage zéro	0,01	0,02	0,10	0,00	0,00	0,00
Critères qualité XPX 43554						
C lue en CH ₄ , par injection de C ₃ H ₈						0,00
Efficacité convertisseur doit être > 0,95						1,000
C _{tue} (ppm _{CH4}) < 5% C _{étalonC3H8} (ppm _{C3H8})x3					24.00	
C lue en CH ₄ , sur le canal COVT					31,80	
Facteur de réponse du méthane du FID					1,18	
C _{Iue} (ppm _{C3H8}) x 3 / C _{étalonCH4} (ppm _{CH4}) VALIDATION DES MESURES - VERIFI	CATION DOCT DOCL	HARRIST THE TAX TO THE				
			02/5/0000 44-24	02/5/0000 44-20	02/5/0000 44-44	02/5/0000 44-40
h _{vers} = Fin vérification étalon C' = Valeur vérification sensibilités	23/5/2022 14:34	23/5/2022 14:34	23/5/2022 14:34	23/5/2022 14:39	23/5/2022 14:44	23/5/2022 14:42
	10,87	12,25	94,20	93,00	70,40	81,50
h _{ver0} = Fin vérification zéro	23/5/2022 14:32	23/5/2022 14:32	23/5/2022 14:32	23/5/2022 14:32	23/5/2022 14:40	23/5/2022 14:40
Z' = Valeur vérification zéro	-0,09	0,05	5,00	0,30	-1,30	-4,00
La dérive gllobale est de :	1,64%	-1,72%	-4,93%	-2,16%	1,26%	-0,93%
Correction due à la dérive (¹ voir calculs ci-dessous)	Pondération	Pondération	Pondération	Pondération	Pondération	Pondération
Facteur humidité résiduelle	1,00	1,00	1,00	1,00		
La dérive absolue en zéro est de:	0,4%	0,2%	2,5%	0,3%	1,3%	4,0%
Constat dérive zéro	OK	ОК	ОК	OK	OK	OK
La dérive absolue en span est de:	1,6%	1,7%	4,9%	2,2%	1,3%	1,0%
Constat dérive span	OK	OK	OK	OK	OK	ОК

Détails des résultats des polluants gazeux par analyseur

Nom installation : Four Date de mesure : 23/05/2022 Intervenants Duquesnoy

		02	CO ₂	СО	NOx	COV totaux	CH₄	COV NM
	RESULTATS BRUTS (corrigés des d							
	unités		%	ppm	ppm	ppm	ppm	ppm
	Minimum Malaura of allan	19.32	0.15	5.45	0.00	7.35	1.68	/
Prélèvement 1 12:06 - 12:36 30 minutes	Maximum Valeurs réelles	20,99	1.08	9.04	3,94	17.92	20.42	1
12: te	Moyenne Valeurs réelles	19.9 ± 0.7	0,7 ± 0,7	7,5 ± 4,8	2,0 ± 2,9	14,1 ± 2,1	14,0 ± 2,0	1
. [CONCENTRATIONS (aux condition		-11.	-,,-	-11-			
3 8 E	unités	g/Nm³	g/Nm³	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eq CH4	mg/Nm³ Ind C
3 12 P	Moyenne sur gaz secs	284,3 ± 10,0	14,5 ± 13,0	9,4 ± 6,0	4.1 ± 6.0	23,1 ± 3,4	10,2 ± 1,5	14,1 ± 6,0
	FLUX	Avec Débit = 8630 Nm3/h						
	unité des resultats	kg/h	kg/h	g/h	g/h	g/h	g/h	g/h
	Flux horaire	2453,5 ± 198,0	125,0 ± 112,0	80,7 ± 52,0	35,2 ± 52,0	199,5 ± 33,0	87,9 ± 14,0	121,6 ± 47,0
	•							
	RESULTATS BRUTS (corrigés des d							
	unités		%	ppm	ppm	ppm	ppm	ppm
	Minimum Valeurs réelles	20,06	0,05	7,53	0,00	2,81	0,00	1
일 을 «	Maximum Valeurs réelles	21,14	0,65	10,37	1,62	17,43	18,72	1
	Moyenne Valeurs réelles	21,0 ± 0,7	0,1 ± 0,7	9,0 ± 4,8	0,2 ± 2,9	6,3 ± 2,1	3,4 ± 2,0	1
[]	CONCENTRATIONS (aux condition	ons normalisées)						
ي <u>۾ اڇَ</u>	unités		g/Nm³	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eq CH4	mg/Nm³ Ind C
Prélèvement 2 12:36 - 13:06 30 minutes	Moyenne sur gaz secs	299,5 ± 10,0	2,7 ± 13,0	11,3 ± 6,0	0,5 ± 5,8	10,4 ± 3,4	2,5 ± 1,4	8,2 ± 4,0
	FLUX	Avec Débit = 8740 Nm3/h						
	unité des resultats	kg/h	kg/h	g/h	g/h	g/h	g/h	g/h
	Flux horaire	2617,4 ± 206,0	23,4 ± 113,0	98,4 ± 53,0	4,3 ± 51,0	91,0 ± 30,0	21,9 ± 13,0	71,6 ± 35,0
	RESULTATS BRUTS (corrigés des d							
	unités		%	ррт	ррт	ррт	ppm	ppm
مالم	Minimum Valeurs réelles	21,12	0,05	8,36	0,00	7,65	1,63	1
13:06 - 13:36 30 minutes	Maximum Valeurs réelles	21,16	0,06	10,52	0,00	9,24	2,20	/
133	Moyenne Valeurs réelles	21,1 ± 0,7	0,0 ± 0,7	9,3 ± 4,8	0,0 ± 2,8	8,6 ± 2,1	1,9 ± 2,0	/
<u> </u>	CONCENTRATIONS (aux condition							
9 0 e	unités		g/Nm³	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eq CH4	mg/Nm³ Ind C
<u>-</u> ∏	Moyenne sur gaz secs	301,8 ± 10,0 Avec Débit = 8730 Nm3/h	0,9 ± 13,0	11,7 ± 6,0	0,0 ± 5,8	14,2 ± 3,4	1,4 ± 1,5	13,0 ± 4,0
	FLUX							
	unité des resultats Flux horaire	kg/h 2635.0 ± 206.0	kg/h 8.3 ± 113.0	g/h 101.8 ± 53.0	g/h	g/h 124.2 ± 31.0	g/h	g/h 113.1 ± 36.0
	Flux noraire	2635,0 ± 206,0	8,3 ± 113,0	101,8 ± 53,0	0,0 ± 51,0	124,2 ± 31,0	12,5 ± 13,0	113,1 ± 36,0
	CONCENTRATIONS							
MOYENNES DES PRELEVEMENTS	CONCENTRATIONS unités	%	%	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eg CH4	mg/Nm³ Ind C
		20,7 ± 0,4	% 0,3 ± 0,4	10,8 ± 3,5	mg/Nm³ eq. NO2 1,5 ± 3,4	15,9 ± 2,0	4,7 ± 0,8	11,7 ± 2,7
Ĭ,	Moyenne sur gaz secs Ecart type		0,3 ± 0,4	10,0 ± 3,5	1,5 ± 3,4	15,9 ± 2,0	4,7 ± 0,0	11,1 ± 2,1
ź	FLUX	V,1	V, 1	1,60	An , the	0,0	1,0	
	unité des resultats	kg/h	kg/h	g/h	g/h	g/h	g/h	g/h
M S	Flux horaire	2568,6 ± 117,4	52,2 ± 65,0	93,6 ± 30,4	13,2 ± 29,6	138,2 ± 18,1	40,7 ± 7,7	102,1 ± 22,9
	Fcart tyne	100.1	63.5	11.3	19.2	55.6	41.1	26.8

DETAILS DES RESULTATS

FOUR

6.2. Perforateur

6.2.1. CARACTERISTIQUES DE L'INSTALLATION

Type d'installation : Perforateur

Type / Nature de combustible : Installation sans combustion

Description du process :

Type de procédé : Continu

L'emplacement des sections de mesures, les orifices de prélèvement et les plates-formes d'accès doivent être conçus conformément aux prescriptions de la norme NF EN 15259. La qualité des résultats de mesures dépend de la bonne implantation et de l'équipement convenable de ces sections de mesure.

CARACTÉRISTIQUES GÉNÉRALES DU CONDUIT CONTRÔLE

Forme et orientation du conduit : Circulaire et Verticale

Diamètre intérieur (m) : 0,18

Diamètre hydraulique $D_H = 4 \times \frac{\text{section}}{\text{périmètre}}$ (m): 0,18

Hauteur totale approximative de la cheminée (m) : 5,0

Conditions d'accès : Plain-pied

Sécurisation du site de mesurage : OUI

Plateforme adaptée pour la mesure

(dimensions et capacité portante): OUI

• EMPLACEMENT DE LA SECTION DE MESURE

Distance en amont de la section sans accident* (m): 1,5

Distance amont suffisante (> 5 x D_H):

Distance en aval de la section sans accident* (m): 3,0

Element perturbateur en aval : Débouché à l'air libre

Distance aval suffisante?

(Cas d'un obstacle de faible influence => d_{aval} ≥ 2 D_H): OUI

Moyens de levage : Aucun

Protection contre les intempéries : OUI

^{*} est considéré comme accident toute perturbation dans l'écoulement (coude, ventilateur, débouché à l'air libre...)

DETAILS DES RESULTATS

PERFORATEUR

• ORIFICES ET POINTS DE PRELEVEMENT DE LA SECTION DE MESURE

Type d'orifice : Trou scie-cloche

Orifices permettant une mesure correcte : Oui

	Conditions normalisées	Conditions réelles
Nombre de points de scrutation pour la mesure de débit selon ISO 10780	1	1
Nombre d'axes de scrutation Selon NF EN 13284-1 (composés particulaires)	1	1
Nombre de points de prélèvement Selon NF EN 13284-1 (composés particulaires)	1	1

Commentaires:

HOMOGÉNÉITE DE LA SECTION DE MESURE (POUR COMPOSES GAZEUX)

Détermination de l'homogénéité : Homogénéité supposée acquise

Effluents issus d'un seul émetteur sans entrée d'air

6.2.2. DETAILS DES CALCULS ET MESURES

• SERIE 1 - Poussières

DEBIT

Détail des prélèvements débit - Essai N°1

Date de mesure : 23/05/2022 Heure : 10:35

Intervenant(s): Duquesnoy

Données gaz :

Pression barométrique sur le lieu de mesure P ₀ (hPa) :	1002
Température sèche moyenne des gaz dans le conduit T_1 (°C) :	24,2
Teneur ponctuelle en O ₂ sur gaz secs (%):	20,9
Teneur ponctuelle en CO ₂ sur gaz secs (%):	0,10
Teneur moyenne en H ₂ O (%):	0,70
Masse volumique aux CNTP r ₀ (kg/m ³ ₀):	1,3
Masse volumique dans le conduit r ₁ (kg/m³):	1,2

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa) : -2 Moyenne (Pa) : -2,0 Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa) : 1002

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	9,0	3	24,2	2,3

Résultats débit - Essai N°1:

Débit des gaz secs (m ³ ₀ /h):	180 ± 221
Débit des gaz humides (m³₀/h):	190 ± 221
Débit des gaz au moment de la mesure (m³/h) :	200 ± 241
Vitesse des gaz dans le conduit (m/s):	2.3 ± 2.8

Ecarts sur résultats débit - Essai N°1:

Pression différentielle pour chaque point des axes > 10Pa : NON-CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME Absence de giration : Oui

Résultat : La section de mesures ne permet pas de mesures de débit normalisées.

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

PERFORATEUR

Détail des prélèvements débit - Essai N°2

Date de mesure : 23/05/2022 Heure : 11:54

Intervenant(s): Duquesnoy

Données gaz :

Pression barométrique sur le lieu de mesure P_0 (hPa): 1002 Température sèche moyenne des gaz dans le conduit T_1 (°C): 23,1 Teneur ponctuelle en O_2 sur gaz secs (%): 20,9 Teneur ponctuelle en CO_2 sur gaz secs (%): 0,10 Teneur moyenne en H_2O (%): 0,80 Masse volumique aux CNTP P_0 (kg/m P_0): 1,3 Masse volumique dans le conduit P_0 (kg/m P_0): 1,2

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -3

Moyenne (Pa): -3,0

P₀ (hPa): 1002

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa):

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	9,0	3	23,1	2,3

Résultats débit - Essai N°2:

Vitesse des gaz dans le conduit (m/s) : $2,3 \pm 2,8$ Débit des gaz au moment de la mesure (m³/h) : 200 ± 241 Débit des gaz humides (m³₀/h) : 190 ± 221 **Débit des gaz secs (m³₀/h) :** 180 ± 221

Ecarts sur résultats débit - Essai N°2:

Pression différentielle pour chaque point des axes > 10Pa : NON-CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME Absence de giration : Oui

Résultat : La section de mesures ne permet pas de mesures de débit normalisées.

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°3

Date de mesure : 23/05/2022 Heure : 13:04

Intervenant(s): Duquesnoy

DETAILS DES RESULTATS

PERFORATEUR

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1002 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 24,5 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 0,80 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m$^3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m$^3):} & 1,2 \\ \mbox{} \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -5 Moyenne (Pa): -5,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1002

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	9,0	4	24,5	2,6

Résultats débit - Essai N°3:

Vitesse des gaz dans le conduit (m/s): 2,6 ± 2,4 Débit des gaz au moment de la mesure (m^3/h) : 240 ± 211 Débit des gaz humides (m^3_0/h) : 210 ± 191 **Débit des gaz secs (m^3_0/h):** 210 ± 191

Ecarts sur résultats débit - Essai N°3:

Pression différentielle pour chaque point des axes > 10Pa : NON-CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME Absence de giration : Oui

Résultat : La section de mesures ne permet pas de mesures de débit normalisées.

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

MESURES PAR FILTRATION | ABSORPTION

Détail des prélèvements - Essai N°1

Date de mesure : 23/05/2022 Intervenants : Duquesnoy

Données de prélèvement :

Heure de début de prélèvement : 10:35 Heure de fin de prélèvement : 11:35 Durée de prélèvement (mn) : 60

DETAILS DES RESULTATS

PERFORATEUR

Température de filtration cible (°C) : 160°C

	Validation étanchéité	Volume prélevé (m³)	Polluants mesurés
Ligne principale	CONFORME	1,589	
	Valeur fuite : 0,3 l/min		
Fraction particulaire		1,589	Poussières*

Paramètres pris en compte pour le calcul des flux :

Débit des gaz secs (m 3 ₀/h): 180 ± 221

Résultats des prélèvements - Essai N°1 :

• MASSES RETENUES:

				FRACTION PARTICULAIRE						FRACTION GAZEUSE						FRACTION TOTALE
Ligne	Polluant	Unité Masse	Masse sui	r Filtre	Masse Rir	nçage	Masse To	otale	Masse barbo		Masse barb secondai		Rende ment	Masse Tota	ale	
LP	Poussières*	mg	20,0	Q	0,18	<ld< td=""><td>20,2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></ld<>	20,2									

Nota: Si masse quantifiée (Q): masse = masse réelle, Si masse détectée mais non quantifiable (<LQ): masse = LQ/2, Si masse non détectée (<LD): masse = 0.

• CONCENTRATIONS:

					FRACTION P	PARTICULAIRE	FRACTION	GAZEUSE	FRACTION TOTALE		
Ligne	Polluant	Unité concen -tration	sur ga	ntration z secs LQ	Concentration sur gaz secs						
LP	Poussières*	mg/m³ □	0,47	0,063	12,7 ± 1,6				12,7 ± 1,6		

• FLUX:

		FRACTION TOTALE						
Ligne	Polluant	Flux Horaire (g/h)	Flux Journalier (kg/jour)	Facteur d'émission (kg/tonne)				
LP	Poussières*	2,3 ± 2,9		1				

Nota: Dans le cas où la concentration mesurée est inférieure à la concentration du blanc de site, le flux est calculé à partir de la valeur de la concentration du blanc.

Détail des prélèvements - Essai N°2

Date de mesure : 23/05/2022 Intervenants : Duquesnoy

Données de prélèvement :

Heure de début de prélèvement : 11:55
Heure de fin de prélèvement : 12:55
Durée de prélèvement (mn) : 60
Température de filtration cible (°C) : 160°C

	Validation étanchéité	Volume prélevé (m³)	Polluants mesurés
Ligne principale	CONFORME	1,437	
	Valeur fuite : 0,3 l/min		
Fraction particulaire		1,437	Poussières*

Paramètres pris en compte pour le calcul des flux :

Débit des gaz secs (m_0^3/h): 180 ± 221

Résultats des prélèvements - Essai N°2 :

• MASSES RETENUES :

			FRACTION PARTICULAIRE FRACTION GAZEUSE								FRACTION TOTALE		
Ligne	Polluant	Unité Masse	Masse su	r Filtre	Masse Rir	nçage	Masse To	tale	Masse barboteu principaux	rs Masse barb secondai	Rende ment		
LP	Poussières*	mg	7,0	Q	0,062	<ld< td=""><td>7,1</td><td></td><td></td><td></td><td></td><td></td><td></td></ld<>	7,1						

Nota: Si masse quantifiée (Q): masse = masse réelle, Si masse détectée mais non quantifiable (<LQ): masse = LQ/2, Si masse non détectée (<LD): masse = 0.

• CONCENTRATIONS:

					FRACTION P	PARTICULAIRE	FRACTION GAZEUSE		FRACTION 1	TOTALE
Ligne	Polluant	Unité concen -tration	sur ga	ntration z secs LQ	Concentration sur gaz secs					
LP	Poussières*	mg/m³ □	0,52	0,14	4,91 ± 0,61				4,91 ± 0,61	

• FLUX:

		FRACTION TOTALE						
Ligne	Polluant	Flux Horaire (g/h)	Flux Journalier (kg/jour)	Facteur d'émission (kg/tonne)				
LP	Poussières*	0,88 ± 1,09		1				

Nota: Dans le cas où la concentration mesurée est inférieure à la concentration du blanc de site, le flux est calculé à partir de la valeur de la concentration du blanc.

Détail des prélèvements - Essai N°3

Date de mesure : 23/05/2022 Intervenants : Duquesnoy

Données de prélèvement :

Heure de début de prélèvement : 13:04
Heure de fin de prélèvement : 14:12
Durée de prélèvement (mn) : 68
Température de filtration cible (°C) : 160°C

	Validation étanchéité	Volume prélevé (m³)	Polluants mesurés
Ligne principale	CONFORME	2,055	
	Valeur fuite : 0,3 l/min		
Fraction particulaire		2,055	Poussières*

Paramètres pris en compte pour le calcul des flux :

Débit des gaz secs (m_0^3/h): 210 ± 191

Résultats des prélèvements - Essai N°3 :

• MASSES RETENUES :

			FRACTION PARTICULAIRE FRACTION GAZEUSE								FRACTION TOTALE			
Ligne	Polluant	Unité Masse	Masse sui	r Filtre	Masse Rin	ıçage	Masse To	otale	Masse barbot principaux	Masse barbote secondaires	Irs Rende		ale	
LP	Poussières*	mg	28,0	Q	0,25	Q	28,2	Q						Q

Nota: Si masse quantifiée (Q): masse = masse réelle, Si masse détectée mais non quantifiable (<LQ): masse = LQ/2, Si masse non détectée (<LD): masse = 0.

• CONCENTRATIONS:

					FRACTION P	PARTICULAIRE	FRACTION	GAZEUSE	FRACTION TOTALE		
Ligne	Polluant	Unité concen -tration	sur ga	ntration z secs LQ	Concentration sur gaz secs						
LP	Poussières*	mg/m³ □	0,37	0,097	13,7 ± 1,8				13,7 ± 1,8		

• FLUX:

FRACTION TOTALE										
Ligne	Polluant	Flux Horaire (g/h)	Flux Journalier (kg/jour)	Facteur d'émission (kg/tonne)						
LP	Poussières*	2,9 ± 2,7		1						

Nota: Dans le cas où la concentration mesurée est inférieure à la concentration du blanc de site, le flux est calculé à partir de la valeur de la concentration du blanc.

MESURES SUR SUPPORTS SPECIFIQUES

Nom installation :	Perforateur	
Intervenant :	Duquesnoy	
Date de prélèvement :	23/05/2022	

N° de prélèvement	Unité	N°1
N° pompe	1	104838
Débit Installation	Nm³/h sec	180
Pression barométrique	hPa	1012
O ₂ Référence	%	
O ₂ mesuré (si VLE O ₂ ref)	%	20,9
Humidité	%	0,7
Heure début de prélèvement	hh:mm	12:55
Heure fin de prélèvement	hh:mm	14:13
Durée prélèvement	min	78
Type de pompe	1	Avec compteur
Température au compteur	°C	19,2
Compteur initial	m ³	26,750
Compteur final	m ³	26,862
Volume réel prélevé	m ³	0,112
Volume normalisé prélevé	Nm³ sec	0,10451
Débit pompe avant mesure	L/min	1
Débit pompe après mesure	L/min	1
Débit pompe moyen	L/min	1
Température sortie pompe	°C	1
Volume réel prélevé	m ³	1
Volume normalisé prélevé	Nm³ sec	1
Volume normalisé retenu	Nm³ sec	0,10451
Volume normalisé retenu	Nm³ sec O₂ref	·

Composé ▼	CAS -	N° →	Débit ▼	Volum ▼	H2O 🕶	-	nt 🔻	ie 1 🔻	Ψ:	k 🔻	e 1 🔻	Tot ▼	Tot ▼	Ren ▼	Concentratio -	Flux 🔻
		plvt	(m³₀/h sec)	(m³ ₀)	%	Brut (µg)	LD	retenu	Brut (µg)	LD	retenu		=f(Blc)		μg/Nm³ sec	g/h
1-Propene 2-methyl-	000115-11-7	N°1	180	0,104512	0,7	5	2	5	0	0	0	5	5	100%	47,8	0,009
Butane	000106-97-8	N°1	180	0,104512	0,7	10	2	10	0	0	0	10	10	100%	95,7	0,017
Pentane	000109-66-0	N°1	180	0,104512	0,7	20	2	20	0	0	0	20	20	100%	191,4	0,034
Acetone	000067-64-1	N°1	180	0,104512	0,7	3	2	3	0	0	0	3	3	100%	28,7	0,005
1-Pentene 2-methyl-	000763-29-1	N°1	180	0,104512	0,7	26	2	26	0	0	0	26	26	100%	248,8	0,045
Benzene	000071-43-2	N°1	180	0,104512	0,7	3	2	3	0	0	0	3	3	100%	28,7	0,005
Cyclohexene	000110-83-8	N°1	180	0,104512	0,7	8	2	8	0	0	0	8	8	100%	76,5	0,014
2-Pentanone	000107-87-9	N°1	180	0,104512	0,7	8	2	8	0	0	0	8	8	100%	76,5	0,014
Methyl Isobutyl Ketone	000108-10-1	N°1	180	0,104512	0,7	5	2	5	0	0	0	5	5	100%	47,8	0,009
Toluène	000108-88-3	N°1	180	0,104512	0,7	5	2	5	0	0	0	5	5	100%	47,8	0,009
Octane	000111-65-9	N°1	180	0,104512	0,7	5	2	5	0	0	0	5	5	100%	47,8	0,009
2,4-Diméthyl-1-heptene	019549-87-2	N°1	180	0,104512	0,7	36	2	36	0	0	0	36	36	100%	344,5	0,062
Styrene	000100-42-5	N°1	180	0,104512	0,7	20	2	20	0	0	0	20	20	100%	191,4	0,034
2-Heptanone, 4-méthyl-	006137-06-0	N°1	180	0,104512	0,7	13	2	13	0	0	0	13	13	100%	124,4	0,022
Undecane, 2,4-diméthyl-	017312-80-0	N°1	180	0,104512	0,7	8	2	8	0	0	0	8	8	100%	76,5	0,014

SERIE 2 - Gaz

DEBIT

Détail des prélèvements débit - Essai N°1

Date de mesure : 23/05/2022 Heure : 12:48

Intervenant(s): Duquesnoy

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1012 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 24,2 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 0,70 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m$^3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m$^3):} & 1,2 \\ \mbox{} \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -2

Moyenne (Pa): -2,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1012

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	9,0	3	24,2	2,3

Résultats débit - Essai N°1:

Vitesse des gaz dans le conduit (m/s) : $2,3 \pm 2,8$ Débit des gaz au moment de la mesure (m³/h) : 200 ± 241 Débit des gaz humides (m³₀/h) : 190 ± 221 **Débit des gaz secs (m³₀/h) :** 180 ± 221

Ecarts sur résultats débit - Essai N°1:

Pression différentielle pour chaque point des axes > 10Pa : NON-CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Résultat : La section de mesures ne permet pas de mesures de débit normalisées.

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°2

Date de mesure : 23/05/2022 Heure : 13:18

Intervenant(s): Duquesnoy

Données gaz :

Pression barométrique sur le lieu de mesure P_0 (hPa): 1012 Température sèche moyenne des gaz dans le conduit T_1 (°C): 23,1 Teneur ponctuelle en O_2 sur gaz secs (%): 20,9 Teneur ponctuelle en CO_2 sur gaz secs (%): 0,10 Teneur moyenne en H_2O (%): 0,80 Masse volumique aux CNTP P_0 (kg/m P_0): 1,3 Masse volumique dans le conduit P_1 (kg/m P_0): 1,2

Pression statique dans le conduit dP₀ (Pa) :

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	9,0	3	23,1	2,3

Résultats débit - Essai N°2:

Vitesse des gaz dans le conduit (m/s) : $2,3 \pm 2,8$ Débit des gaz au moment de la mesure (m³/h) : 200 ± 241 Débit des gaz humides (m³₀/h) : 190 ± 221 **Débit des gaz secs (m³₀/h) :** 190 ± 221

Ecarts sur résultats débit - Essai N°2:

Pression différentielle pour chaque point des axes > 10Pa : NON-CONFORME T°/T° moyen pour chaque point des axes <5% : CONFORME Variation de vitesse pour chaque point des axes <5% : CONFORME Absence de giration : Oui

Résultat : La section de mesures ne permet pas de mesures de débit normalisées.

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

Détail des prélèvements débit - Essai N°3

Date de mesure : 23/05/2022 Heure : 13:48

Intervenant(s): Duquesnoy

DETAILS DES RESULTATS

PERFORATEUR

Données gaz :

 $\begin{array}{lll} \mbox{Pression barométrique sur le lieu de mesure P_0 (hPa):} & 1012 \\ \mbox{Température sèche moyenne des gaz dans le conduit T_1 (°C):} & 24,5 \\ \mbox{Teneur ponctuelle en O_2 sur gaz secs (%):} & 20,9 \\ \mbox{Teneur ponctuelle en CO_2 sur gaz secs (%):} & 0,10 \\ \mbox{Teneur moyenne en H_2O (%):} & 0,80 \\ \mbox{Masse volumique aux CNTP r_0 (kg/m3_0):} & 1,3 \\ \mbox{Masse volumique dans le conduit r_1 (kg/m3):} & 1,2 \\ \mbox{} \end{array}$

Pression statique dans le conduit dP₀ (Pa) :

Axe 1 (Pa): -5 Moyenne (Pa): -5,0

Pression absolue dans le conduit $P_1 = P_0 + dP_0$ (hPa): 1012

Profil des vitesses déterminé au cours du prélèvement :

Axe 1

Points	Distance par rapport à la paroi (cm)	Pression différentielle (Pa)	Température (°C)	Vitesse des gaz (m/s)
1	9,0	4	24,5	2,6

Résultats débit - Essai N°3:

Vitesse des gaz dans le conduit (m/s) : $2,6 \pm 2,3$ Débit des gaz au moment de la mesure (m³/h) : 230 ± 211 Débit des gaz humides (m³₀/h) : 220 ± 191 **Débit des gaz secs (m³₀/h) :** 210 ± 191

Ecarts sur résultats débit - Essai N°3:

Pression différentielle pour chaque point des axes > 10Pa : NON-CONFORME

T°/T° moyen pour chaque point des axes <5% : CONFORME

Variation de vitesse pour chaque point des axes <5% : CONFORME

Absence de giration : Oui

Résultat : La section de mesures ne permet pas de mesures de débit normalisées.

Remarques

L'installation est équipée d'un extracteur fixant le débit d'émission. Le profil des vitesses a été établi en prenant en compte la distribution spatiale des vitesses. Les effets temporels n'ont pas été pris en compte conformément aux référentiels NFENISO16911-1 et FDX43140.

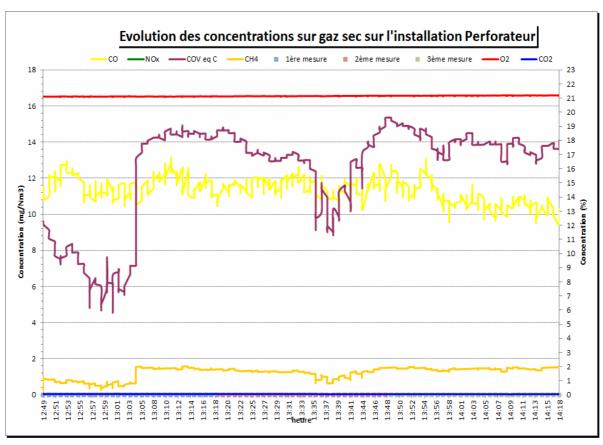
POLLUANTS GAZEUX - MESURES AUTOMATIQUES

Périodes supprimées : aucune

Résultats des mesures :

Ajustage et vérification des analyseurs - Correction des dérives

Nom installation :
Perforateur
Date de mesure :
23/05/2022
Intervenants
Duquesnoy


Substances	02	CO ₂	CO	NOx	COV totaux	CH ₄
unité des gaz mesurés	%	%	ppm	ppm	ppm	ppm
Valeur pleine échelle	25	20	200	100	100	100
Nature du gaz étalon	O2,CO2,CO ds	O2,CO2,CO ds	O2,CO2,CO ds	NO dans azote	Propane dans air	CH4 dans air
T = Teneur de ce gaz étalon	11,05	12,04	89,90	91,00	71,20	80,60
Gaz de zéro utilisé	Azote Alphagaz1 (pureté>99,999%)	Azote Alphagaz1 (pureté>99,999%)	Azote Alphagaz1 (pureté>99,999%)	Azote Alphagaz1 (pureté>99,999%)	Air Alphagaz1 (pureté>99,999%)	Air Alphagaz1 (pureté>99,999%)
0 = Teneur de ce gaz zéro	0	0	0	0	0	0
AJUSTAGE EN TETE DE LIGNE						
h _{cals} = Début ajustage étalon	23/5/2022 10:15	23/5/2022 10:15	23/5/2022 10:15	23/5/2022 10:18	23/5/2022 10:00	23/5/2022 10:06
C = valeur ajustage sensibilités	11,05	12,04	89,80	91,00	71,30	80,70
h _{cal0} = Verif ajustage zéro	23/5/2022 10:20	23/5/2022 10:20	23/5/2022 10:20	23/5/2022 10:20	23/5/2022 10:08	23/5/2022 10:08
Z = valeur ajustage zéro	0,01	0,02	0,10	0,00	0,00	0,00
Critères qualité XPX 43554						
C lue en CH ₄ , par injection de C ₃ H ₈						0,00
Efficacité convertisseur doit être > 0,95						1.000
$C_{lue}(ppm_{CH4}) < 5\% C_{dtalonC3H8}(ppm_{C3H8})x3$						1,000
C lue en CH ₄ , sur le canal COVT					31,80	
Facteur de réponse du méthane du FID					1,18	
C _{tue} (ppm _{C3H8}) x 3 / C _{étalonCH4} (ppm _{CH4})					1,10	
VALIDATION DES MESURES - VERIFI	ICATION POST PRELE	EVEMENT				
h _{vers} = Fin vérification étalon	23/5/2022 14:34	23/5/2022 14:34	23/5/2022 14:34	23/5/2022 14:39	23/5/2022 14:44	23/5/2022 14:42
C' = Valeur vérification sensibilités	10,87	12,25	94,20	93,00	70,40	81,50
h _{ver0} = Fin vérification zéro	23/5/2022 14:32	23/5/2022 14:32	23/5/2022 14:32	23/5/2022 14:32	23/5/2022 14:40	23/5/2022 14:40
Z' = Valeur vérification zéro	-0,09	0,05	5,00	0,30	-1,30	-4,00
La dérive gllobale est de :	1,64%	-1,72%	-4,93%	-2,16%	1,26%	-0,93%
Correction due à la dérive (¹ voir calculs ci-dessous)	Pondération	Pondération	Pondération	Pondération	Pondération	Pondération
Facteur humidité résiduelle	1,00	1,00	1,00	1,00		
La dérive absolue en zéro est de:	0,4%	0,2%	2,5%	0,3%	1,3%	4,0%
Constat dérive zéro	ОК	ОК	ОК	ОК	OK	OK
La dérive absolue en span est de:	1,6%	1,7%	4,9%	2,2%	1,3%	1,0%
Constat dérive span	OK	OK	ОК	OK	OK	ОК

Détails des résultats des polluants gazeux par analyseur

Nom installation :
Perforateur
Date de mesure :
23/05/2022
Intervenants
Duquesnoy

	·							
		O ₂	CO₂	СО	NOx	COV totaux	CH₄	COV NM
	RESULTATS BRUTS (corrigés des de	érives éventuelles)						
	unités	%	%	ppm	ppm	ppm	ppm	ppm
	Minimum Malaura of allan	21.12	0.05	8.37	0.00	2.81	0.00	/
Prélèvement 1 12:48 - 13:18 30 minutes	Maximum Valeurs réelles	21,15	0.06	10.53	0.00	9.24	2,19	1
13: tes	Movenne Valeurs réelles	21.1 ± 0.7	0.1 ± 0.7	9.3 ± 4.8	0.0 ± 2.8	6.4 ± 2.1	1.4 ± 2.0	1
E . E	CONCENTRATIONS (aux condition		0,120,1	0,0 2 1,0	0,0 2 2,0	0,122,1	1,1 2 2,0	
ے ہاقہ	unités	g/Nm³	g/Nm³	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eq CH4	mg/Nm³ Ind C
<u>a</u> 2, €	Moyenne sur gaz secs	301,7 ± 10,0	1.0 ± 13.0	11.6 ± 6.0	0.0 ± 5.8	10.3 ± 3.3	1.0 ± 1.4	9.4 ± 4.0
ш -	FLUX	Avec Débit = 180 Nm3/h	.,		-1		.,. = .,.	2,1,2,1,2
	unité des resultats	kg/h	kg/h	g/h	g/h	g/h	g/h	g/h
	Flux horaire	54,3 ± 67,0	0,2 ± 3,0	2,1 ± 3,0	0,0 ± 2,0	1.9 ± 3.0	0.2 ± 1.0	1,7 ± 3,0
			-,,-	-,	-,,-	.,,-	., ,,-	111-
	RESULTATS BRUTS (corrigés des de	érives éventuelles						
	unités	%	%	ррт	ppm	ppm	ppm	ppm
	A.C. Carrows A.C. Larrows and a Harris	21,14	0.04	8.18	0.00	5.48	0.90	ppin I
13:18 - 13:48 30 minutes	Maximum Valeurs réelles	21,14	0.06	10.24	0.00	9.50	2.10	1
te %	Movenne Valeurs réelles	21,10 21,2 ± 0.7	0.0 ± 0.7	9.2 ± 4.8	0,0 ± 2,8	8,0 ± 2,1	1,7 ± 2,0	1
<u> </u>	CONCENTRATIONS (aux condition		0,0 1 0,7	3,2 1 4,0	0,0 1 2,0	0,0 12,1	1,7 1 2,0	
ع ‱≛	unités	g/Nm³	g/Nm³	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eg CH4	mg/Nm³ Ind C
활동용	Moyenne sur gaz secs	302,0 ± 10,0	0,9 ± 13,0	11,5 ± 6,0	0.0 ± 5.8	13.0 ± 3.3	1,2 ± 1,4	11,9 ± 4,0
⊡ ∺	FLUX	Avec Débit = 190 Nm3/h	0,3 1 13,0	11,5 1 0,0	0,0 1 3,0	13,0 1 3,3	1,2 1 1,4	11,5 1 4,0
	unité des resultats	kg/h	kg/h	g/h	g/h	g/h	g/h	q/h
	Flux horaire	57,4 ± 68,0	0,2 ± 3,0	2,2 ± 3,0	0,0 ± 2,0	2,5 ± 3,0	0,2 ± 1,0	2,3 ± 3,0
	RESULTATS BRUTS (corrigés des de	érives éventuelles)						
	unités	%	%	ppm	mag	ррт	mag	ppm
	Minimum Valeurs réelles	21,17	0.03	7.53	0,00	7,90	1,77	1
13:48 - 14:18 30 minutes	Maximum Valeurs réelles	21,20	0.05	10,49	0,00	9,50	2,17	/
te 14	Movenne Valeurs réelles	21.2 ± 0.7	0.0 ± 0.7	8.7 ± 4.8	0.0 ± 2.8	8,7 ± 2,1	2,0 ± 2,0	/
. i≣	CONCENTRATIONS (aux condition	ons normalisées)						
를 유 등	unités	g/Nm³	g/Nm³	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eq CH4	mg/Nm³ Ind C
မျိုးကို က	Moyenne sur gaz secs	302,5 ± 10,0	0,8 ± 13,0	10,8 ± 6,0	0.0 ± 5.8	14,0 ± 3,3	1,5 ± 1,4	12,7 ± 4,0
	FLUX	Avec Débit = 210 Nm3/h						
	unité des resultats	kg/h	kg/h	g/h	g/h	g/h	g/h	g/h
	Flux horaire	63,5 ± 59,0	0,2 ± 3,0	2,3 ± 3,0	0,0 ± 2,0	2,9 ± 3,0	0,3 ± 1,0	2,7 ± 3,0
SIS	CONCENTRATIONS							
씸닏	unités	%	%	mg/Nm³	mg/Nm³ eq. NO2	mg/Nm³ Ind C	mg/Nm³ eq CH4	mg/Nm³ Ind C
S	Moyenne sur gaz secs	21,2 ± 0,4	0,0 ± 0,4	11,3 ± 3,5	0,0 ± 3,3	12,4 ± 1,9	1,2 ± 0,8	11,3 ± 2,3
쀨	Ecart type	0,0	0,0	0,4	0,0	1.9	0,2	1,7
MOYENNES DES PRELEVEMENTS	FLUX	1	1	-4	-4	-4	-4	-4
이뮨	unité des resultats	kg/h 58.4 ± 37.4	kg/h	g/h	g/h	g/h	g/h 0.2 ± 0.6	g/h 2.2 ± 1.7
≥ ₫	Flux horaire Foart type	58,4 ± 37,4 4.7	0,2 ± 1,7	2,2 ± 1,7	0,0 ± 1,2	2,4 ± 1,7 0.5	0,2 ± 0,6	Z,2 ± 1,7

DETAILS DES RESULTATS

PERFORATEUR

7. ANNEXES

Les annexes font partie intégrante du rapport d'essais.

Annexe 1 - Glossaire

Conditions normales de température et de pression (CNTP) :

Valeurs de référence, exprimées sur gaz sec à une pression de 101.325 kPa, arrondis à 101.3 kPa et à une température de 273.15 K, arrondis à 273 K.

La notation utilisée pour les volumes de gaz normalisés est le Nm³ (normaux mètre cube) ou le m³₀, en fonction des littératures.

Blanc de site / Blanc de prélèvement :

Valeur déterminée pour un mode opératoire spécifique utilisé pour garantir qu'aucune contamination significative ne s'est produite pendant l'ensemble des étapes de mesurage et pour contrôler que l'on peut atteindre un niveau de quantification adapté au mesurage.

Limite de détection (LD):

Valeur de concentration du mesurande au dessous de laquelle le niveau de confiance, selon lequel la valeur mesurée correspondant à un échantillon où le mesurande est absent, est au moins de 95%.

Limite de quantification (LQ):

Valeur de concentration minimale pour laquelle la concentration du mesurande peut être déterminée avec un niveau de confiance de 95%

Incertitude:

Paramètre associé au résultat d'un mesurage et qui caractérise la dispersion des valeurs qui pourraient raisonnablement être attribuées au mesurande.

Incertitude élargie:

Grandeur définissant un intervalle de confiance, autour du résultat d'un mesurage, dont on puisse s'attendre à ce qu'il comprenne une fraction spécifique de la distribution des valeurs qui pourraient raisonnablement être attribuée au mesurande. L'incertitude élargie est calculée avec un facteur d'élargissement k=2 et un niveau de confiance de 95%.

Annexe 2 : Formules usuelles de calcul

CNTP: T₀= 273.15 K P₀= 1013.25 hPa

Débit volumique sur gaz secs aux CNTP

$$Q_{v,Os} = Q_{v,h} \times \frac{P_c}{1013.25} \times \frac{273}{T_c} \times \frac{100 - H_2O}{100}$$

- Q_{v,0s} Débit volumique sur gaz secs aux CNTP (m³₀/h)
- Q_{v,h} Débit volumique sur gaz humide, aux conditions de T° et P° du conduit $(m^3 _0/h)$
- P_c Pression absolue dans le conduit (mbar)
 T_c Température des gaz dans le conduit (K)
 H₂O Teneur en eau dans le conduit (% vol)

Volume de gaz prélevé aux CNTP : Vos

$$V_{0s} = V_s \times \frac{P_{atm}}{P_0} \times \frac{T_0}{T_d}$$

- V_{0s}
 V_s
 Volume de gaz sec aux CNTP (m³₀)
 V_s
 Volume de gaz sec prélevé aux CNTP
- T_d Température moyenne mesurée au niveau du compteur
- Patm Pression absolue au compteur considérée égale à la pression atmosphérique (pression relative au niveau du compteur négligeable par rapport à la pression atmosphérique)

Equation de base du calcul de la concentration en polluants (méthodes manuelles)

$$C_{t,0s} = C_{g,0s} + C_{p,0s} = \frac{m_{X,g}}{V_{gx,0s}} + \frac{m_{X,p}}{V_{p,0s}}$$

- C_{t,0s} Concentration totale du composé dans l'effluent aux CNTP sur gaz sec (mg/ m³₀)
- C_{g,0s}
 Concentration de la fraction gazeuse du composé dans l'effluent aux CNTP sur gaz sec (mg/ m³_o)
- C_{p,0s} Concentration de la fraction particulaire du composé dans l'effluent aux CNTP sur gaz sec (mg/ m³_o)
- m_{x,q} Masse totale de composé piégé sous forme gazeuse (mg)
- m_{x,p} Masse totale de composé piégé sous forme particulaire sur le filtre (mg)
- V_{gx,0s}
 Volume de gaz sec prélevé sur la ligne secondaire où le composé est piégé sous sa forme gazeuse aux CNTP (m³₀)
- Volume de gaz sec total prélevé aux CNTP (m³₀). Ce volume est égal à la somme des volumes de gaz prélevés sur la ligne principale et sur les différentes lignes secondaires.

NOTA: Pour les prélèvements sans lignes secondaires en dérivation, Vgx,0s = Vp,0s

Calcul d'une incertitude moyenne, à partir de plusieurs essais

$$u_{MOYENNE}^2 = \frac{1}{n^2} \times \sum_{i=1}^n u_i^2$$
 \longrightarrow $u_{MOYENNE} = \frac{1}{n} \times \sqrt{\sum_{i=1}^n u_i^2}$

- u Incertitude de mesure
- n Nombre de mesures

Conversion de la concentration mesurée à une teneur de référence en oxygène

$$C_{vol,O2ref} = C_{vol} \times \frac{20,9 - O_{2,ref}}{20,9 - O_{2}}$$

- C_{vol,O2ref} Concentration du composé aux CNTP sur gaz sec, à la concentration en oxygène de référence (mg/ m³₀)
- Concentration du composé aux CNTP sur gaz sec (mg/ m³₀)
- Concentration en oxygène de référence (% volumique)
 Concentration en oxygène dans le conduit (% volumique sur gaz secs)

Conversion de la concentration mesurée sur gaz humides (COVT par exemple) à une teneur sur gaz secs

$$C_{\text{sec}} = C_{hum} \times \frac{100}{100 - H_2O}$$

- Concentration du composé aux CNTP sur gaz sec (mg/m_0^3) Concentration du composé aux CNTP sur gaz humide (mg/m_0^3)
- Teneur en eau dans le conduit (% vol)

Mesures automatiques par analyseurs

Passage des ppm en mg/m³₀:

Valeur mesurée en ppm
$$\times \frac{\text{Masse molaire du polluant}}{22.4} = \text{mg/m}_0^3$$

Passage des ppm de C₃H₈ en mg de CH₄:

$$ppm_{C3H8} \times \frac{16 \text{ (masse molaire CH}_4)}{22.4} \times 3 = mg_{CH4} / m_0^3$$

Passage des ppm de C₃H₈ en mg de C:

$$ppm_{C3H8} \times \frac{12 \text{ (masse molaire C)}}{22.4} \times 3 = mg_C / m_0^3$$

Annexe 3 : Détails des méthodologies de mesures

La présente mission et les essais associés ont été menés conformément à la norme NFX43551 (2021-10) « Emissions de sources fixes – Exigences spécifiques de mesurage (ressources, processus de mise en œuvre, rapportage) »

MESURE DE DEBIT

La méthode repose sur l'exploration du profil des pressions différentielles dans le conduit sur un ensemble de points quadrillant la section de prélèvement, à l'aide d'un tube de PITOT normalisé, relié à un micro manomètre électronique. La vitesse en chaque point est ainsi déterminée, et le débit est calculé à partir de la vitesse moyenne et de l'aire de la section transversale.

TENEUR EN EAU

Méthode par condensation et/ou adsorption : Un échantillon de gaz est prélevé dans le flux de gaz à travers une unité de piégeage. La masse d'eau ainsi récupérée est quantifiée par pesée. La teneur en eau du conduit est ensuite déterminer par calcul.

Dans le cas d'un conduit saturé en eau, la teneur est déterminée à partir de la mesure de la température du conduit et d'une table des concentrations en vapeur d'eau des gaz saturés.

Dans le cas des conduits très peu humides, la teneur en eau est déterminée par la méthode Température sèche/humide et déterminée selon les tables de rapports de mélange.

METHODES AUTOMATIQUES

Un échantillon de gaz est continuellement extrait de l'effluent gazeux, à l'aide d'une sonde et d'une ligne de prélèvement téflon chauffée de façon à éviter toute condensation de l'échantillon dans la ligne.

Un filtre élimine la poussière et la vapeur d'eau présente dans l'échantillon est éliminée à l'aide d'un système de refroidissement ou d'une sonde à perméation juste avant d'entrer dans l'analyseur.

Dans le cas de mesures électrochimiques, un piège à interférent en amont de la cellule NO, permet l'élimination du SO₂.

Les signaux sont traités et enregistrés par un système d'acquisition en continu.

L'étalonnage est effectué grâce à des bouteilles étalons certifiées (*Précision 2% pour les gaz et étalon et qualité 5.0 pour l'azote*), aux teneurs adaptées aux conditions de l'installation à contrôler.

Un ajustage est effectué avant chaque série de mesure. Des vérifications en tête de ligne, et en entrée analyseur permettent d'écarter les fuites sur les équipements. En fin de mesures, les dérives sont vérifiées par passage des gaz certifiés, et les résultats sont corrigés de cette éventuelle dérive.

METHODES MANUELLES PAR FILTRATION ET/OU ABSORPTION

La méthode repose sur l'extraction (isocinétique en cas de présence de vésicules ou de détermination d'une phase particulaire) d'un échantillon représentatif de l'effluent gazeux.

La fraction particulaire présente dans le gaz est recueillie sur un filtre en fibres de quartz placé à l'extérieur ou à l'intérieur du conduit. A l'issu du prélèvement, ce filtre est pesé pour la détermination des poussières (différence entre la pesée finale et la pesée initiale des filtres, après passage à l'étuve et séchage) et/ou est envoyé à un laboratoire externe pour mise en solution et analyse des éléments recherchés. Les extraits secs issus du rinçage des éléments en amont du filtre sont également pesés et/ou analysés et sont comptabilisés dans la quantification de la phase particulaire.

Après le filtre, l'échantillon gazeux traverse une série de flacons laveurs placés en dérivation de la ligne principale, et contenant des solutions d'absorption appropriées aux polluants à mesurer. La phase gazeuse des polluants est absorbée dans ces solutions qui sont par la suite transmises à un laboratoire externe pour analyses.

Les volumes prélevés sur chaque ligne de prélèvement sont déterminés au moyen d'un compteur à gaz sec étalonné.

Les concentrations particulaires et gazeuses ainsi fournies correspondent à une répartition à la température de filtration et non à la situation physique réelle dans le conduit.

MÉTHODES MANUELLES PAR FILTRATION ET/OU ADSORPTION

La méthode utilisée est la méthode à filtre et à condenseur, sans division de débit. L'échantillon est prélevé de manière isocinétique, à travers une buse et une canne en verre ou en titane

ANNEXES

La fraction particulaire est prélevée sur un filtre plan en fibres de verre ou de quartz, placé à l'extérieur du conduit. La fraction gazeuse, est refroidie par passage dans un condenseur, et est piégée par adsorption sur une résine XAD2. Le volume prélevé est déterminé au moyen d'un compteur à gaz sec.

Le filtre, les condensats, la résine et le rinçage des éléments en amont du filtre sont ensuite transmis à un laboratoire externe pour extraction, détermination et quantification des éléments recherchés.

Annexe 4 : Suivi de l'isocinétisme

Four

SERIE 1 - Poussières

Essai N°1

DI moy = **4,3**

Axe	Point	Dist.	Buse	Heure	H1	T° conduit	T° compteur LP	T° filtration	Débit pompe principale	Relevé compteur LP	Relevé compteur LS1	Relevé compteur LS2	Relevé compteur LS3	Relevé compteur LS4	Relevé compteur LS5	Taux iso
1	1	11,7	9	10:14	16	86,2	18,5	160	17,5	215,515						7,9
1	2	68,3	9	10:29	18	86,3	18,8	160	18,6	215,798						8,2
1	2	68,3	9	10:44		86,7	19,6	160		216,099						
2	1	11,7	9	10:45	21	86,5	19,7	160	20,1	216,11						-0,8
2	2	68,3	9	11:00	25	86,3	20,3	160	22	216,409						1,7
2	2	68,3	9	11:14		86,3	20,5	160		216,722						•

Essai N°2

DI moy = **6,3**

Axe	Point	Dist.	Buse	Heure	H1	T° conduit	T° compteur LP	T° filtration	Débit pompe principale	Relevé compteur LP	Relevé compteur LS1	Relevé compteur LS2	Relevé compteur LS3	Relevé compteur LS4	Relevé compteur LS5	Taux iso
1	1	11,7	9	11:54	21	87,5	20,7	160	20,1	217,134						-3,3
1	2	68,3	9	12:09	20	87,6	20,7	160	19,6	217,426						-0,8
1	2	68,3	9	12:24		87,5	20,7	160		217,718						
2	1	11,7	9	12:25	23	87,4	20,7	160	21,1	217,743						14,6
2	2	68,3	9	12:40	18	87,6	20,8	160	18,6	218,105						14,6
2	2	68,3	9	12:54		87,6	20,8	160		218,404					·	

Essai N°3

DI moy = **11,6**

Axe	Point	Dist.	Buse	Heure	H1	T° conduit	T° compteur LP	T° filtration	Débit pompe principale	Relevé compteur LP	Relevé compteur LS1	Relevé compteur LS2	Relevé compteur LS3	Relevé compteur LS4	Relevé compteur LS5	Taux iso
1	1	11,7	9	13:03	24	87,2	21	160	21,4	218,552						10,8
1	2	68,3	9	13:18	20	87	21	160	19,6	218,908						11,1
1	2	68,3	9	13:33		87,1	21,1	160		219,234						
2	1	11,7	9	13:34	19	87,2	21	160	19,1	219,287						12,3
2	2	68,3	9	13:49	21	87,1	21,1	160	20	219,608						12,2
2	2	68,3	9	14:05		87,1	21,1	160		219,968						

ANNEXES

Annexes complémentaires

CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

RAPPORT D'ANALYSE

Edité le 16/06/2022

DEKRA INDUSTRIAL
M. Maxime DUQUESNOY
78 rue Gustave Delory
Parc Telmat - Båt B
59810 LESQUIN
FRANCE

Tél client : Fax client :

Le rapport établi ne concerne que les échantillons soumis à l'essai. Il comporte 3 pages. La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

Les paramètres sous-traités sont identifiés par (*).

Identification Dossier LSE22-80752

Doc Adm Client : Cde 0113/22/245/ECH - Aff D9071891-2201

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Toutes les informations relatives aux conditions de prélèvement ont été transmise par le client. Le laboratoire n'est pas responsable de la validité des informations transmises par le client.

Nombre d'échantillon(s) : 2

Approuvé par : Grégory BARRAS

Identification Dossier L8E2206-86706 L8E2206-38349 identification echantilion : LSE22-80752 Ref client : TCA 99446 Perfo TCA 99443 four Type échantillon : Polluants à l'émission Polluants à l'émission Nature: Date de prélévement : 31/05/2022 12:52 31/05/2022 09:56 Date de réception : Date de début d'analyse : 03/06/2022 09:56 03/06/2022 12:52

Paramètre Ki (%	Kd) (%)	im (%)	LQ	Unité	Résultat 90	Limite Qualité	Ref Qualité QUO	Foesultet \$2	Limite Quelité	Ref Qualité #
Composés divers Divers Soreening semi-quantitatir Méthode: Adsorption sur charbon et Norme: Methode interne	эслуз		4	ра	Voir rapport NA Joint			Voir NA rapport Joint		

Kt : Coefficient d'adsorption_désortion Kd : Rendement de récupération analytique ou coefficient de désorption Détection : Q : Quantifié D : Détecté ND : Non Détecte NA : Non Applicable

Observations:

LSE2206-39349

Le support est arrivé au laboratoire non bouché, risque de contamination hors prélèvement. tube reçu cassé, zone "back" absente, rendu des résultats de la zone Front du tube uniquement

Conclusions:

Page 2/3

Société par action simplifiée au capital de 2 283 622,30 € - RCS Lyon B 410 545 313 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 313 8iège social et laboratoire : 4, avenue Jean Moulin — CS 30228 - 6653 2 SENISBIEUX CEDEX - TÉ: (33) 0 472 76 15 16 - Fax: (33) 04 76 72 35 03 8ite web: www.groupecarso.com - e-mail : carso@groupecarso.com

Approbateur des échantillons :

LSE2205-65705 LSE2206-39349

Grégory BARRAS

Valideur technique

Page 3 / 3

Société par action simplifiée au capital de 2 283 622,30 € - RCS Lyon B 410 545 313 - SIRET 410 545 313 00042 - APE 7120B — N° TVA: FR 82 410 545 313 Siège social et laboratoire : 4, avenue Jean Moulin — CS 30228 - 69633 VENISSIEUX CEDEX - Tél : (33) 04 72 76 16 16 - Fax : (33) 04 78 72 35 03 Site web : www.groupecarso.com - e-mail : carso@groupecarso.com

LSE22-80752 rapport screen.xlsx

Screening semi-quanti sur TCA

Dossier LSE22-80752

Analyse : Screening semi-quantitatif sur tube de charbon actif

methode d'analyse :	Chromatographie en phase gaz couplée à un détecteur de masse
methode d'extraction	Désorption par solvant (disulfure de carbone)
support de prélèvement	Tube de charbon actif = 400/200mg lot ORBO0654
Conditions de stockage des échantillons	4°C
Date de début d'analyse	03/06/2022

	Réf CARSO	téf CARSO LSE2205-65705				
				TCA 99446 Perfo		
		Réf Client	zone de mesure (front)	zone de validation (back)		
Liste des Composés identifiés	Masse molaire (g/mol)	Formule	N° CAS	Quantité en µg/piège		
1-Propene, 2-methyl-	56	C4H8	000115-11-7	6	3	
Butane	58	C4H10	000106-97-8	11	0	
Pentane	72	C5H12	000109-66-0	20	0	
Acetone	58	C3H6O	000067-64-1	4	0	
1-Pentene, 2-methyl-	84	C6H12	000763-29-1	26	0	
Benzene	78	C6H6	000071-43-2	3	0	
Cyclohexene	82	C6H10	000110-83-8	8	0	
2-Pentanone	86	C5H10O	000107-87-9	9	0	
Methyl Isobutyl Ketone	100	C6H12O	000108-10-1	6	0	
Toluene	92	C7H8	000108-88-3	5	0	
Octane	114	C8H18	000111-65-9	5	0	
2,4-Dimethyl-1-heptene	126	C9H18	019549-87-2	36	0	
Styrene	104	C8H8	000100-42-5	20	0	
2-Heptanone, 4-methyl-	128	C8H16O	006137-06-0	13	0	
Pics non identifiés				147	0	
Total COV extrait				318	3	

Remarque échantillon :

Pour un ou plusieurs composé, la quantité retrouvée dans la zone de validation du tube (zone back) est supérieure à 5% de la quantité déterminée dans la zone de mesure (zone front). Les peries lors du prélèvement de ces composés ne sont pas négligeables.

Les pics non identifiés détectés sont des alcanes, alcènes ramifiés de C10 à C13.

LSE22-80752 rapport screen.xlsx

Screening semi-quanti sur tube de charbon actif

Dossier LSE22-80752

Analyse : Screening semi-quantitatif sur tube de charbon actif					
me thode d'analyse :	Chromatographie en phase gaz coupiée à un détecteur de masse				
me thode d extraction	Désorption par solvant (disulfure de carbone)				
support de prélèvement	Tube de charbon actif = 400/200mg lot ORBO0654				
Conditions de stockage des échantillons	4°C				
Date de début d'analyse	03/06/2022				

			Réf CARSO	LSE2206-39349
			B. (F. CT)	TCA 99443 four
	Réf Client	zone de mesure (front)		
Liste des Composés identifiés	Masse molaire (g/mol)	Formule	N° CAS	Quantité en µg/piège
1-Propene, 2-methyl-	56	C4H8	000115-11-7	5
Butane	58	C4H10	000106-97-8	10
Pentane	72	C5H12	000109-66-0	20
Acetone	58	C3H6O	000067-64-1	3
1-Peniene, 2-methyl-	84	C6H12	000763-29-1	26
Bergene	78	C6H6	000071-43-2	3
Cyclohexene	82	C6H10	000110-83-8	8
2-Pentanone	86	C5H100	000107-87-9	8
Methyl Isobutyl Ketore	100	C6H12O	000108-10-1	5
Toluene	92	C7H8	000108-88-3	5
Octane	114	C8H18	000111-65-9	5
2,4-Dimethyl-1-heptene	126	C9H18	019549-87-2	36
Styrene	104	C8H8	000100-42-5	20
2-Heptanone, 4-methyl-	128	C8H16O	006137-06-0	13
Undecane, 2,4-dimethyl-	184	C13H28	017312-80-0	8
Pics non identifiés				131
Total COV extrait				308

Les pics non identifiés délectés sont des alcanes, alcènes ramifiés de C10 à C13. Le support est arrivé au laboratoire non bouché, risque de contamination hors prélèvement, tube reçu cassé, zone "back" absente, rendu des résultats de la zone Front du tube uniquement

Remarques générales :

0 = Non détecté

0 = Non detecte

Pics non identifiés = Somme des pics non identifié exprimée en équivalent toluène

Total COV extrait = Somme des composés identifiés et non identifiés

La limite de détection et de (semi)quantification pour l'ensemble des composés identifiables est fixée à

4 µg pour la zone back (ou validation) et 4 µg pour la zone front (mesure).

Certains composés peuvent néanmoins être identifiés à des quantilés plus basses,
d'où la prése noe éventuelle de composés dont la quantié rétrouvée est inférieure à 4µg sur le rapport.

La semi-quantifiation est réalisée selon une sélection d'une 30aine d'étalon, chaque composé identifié est exprimé par rapport à un composé

de cette sélection lui étant le plus proche possible (même famille, temps de rélention équivalent)

Le sulfure de carbone et l'ethanoi ne sont pas identifiables dans les échantillons car l'un étant le solvant de désorption et l'autre le solvant de préparation des solutions d'étalons internes donc présent automatiquement dans l'extrait de l'échantillon. (L'identification et la quantification de ces 2 composés doivent-faire l'objet d'une demande d'analyses spécifique).

Titre du signataire : Ingénieur de Laboratoire Service Traces Traces Organiques / Air

BARRAS Grégory

